NET POWER CAPACITY OF GEOTHERMAL WELLS VERSUS RESERVOIR TEMPERATURE – A PRACTICAL PERSPECTIVE

Subir K. Sanyal, James W. Morrow, and Steven J. Butler

GeothermEx, Inc.
Richmond, California USA
e-mail: mw@geothermex.com

ABSTRACT

This paper investigates the practical range of net power capacity available from conventional and enhanced geothermal wells as a function of temperature and productivity index. For a temperature range of 100°C to 190°C, which is the operating temperature limit of presently available downhole pumps, wells are typically pumped and power is usually generated in a binary-cycle plant, and in rare cases in a flash-cycle or hybrid-cycle plant. In this temperature range, the net MW capacity of a well has an upper limit of about 7.3 MW, irrespective of how high the well’s productivity index is. This capacity limit cannot be improved unless technology can be improved to allow setting pumps deeper in the well than the current limit of 457m (1,500 feet) and pumping at a higher rate than the present limit of about 160 ℓ/s (2,500 gallons per minute). For resource temperatures greater than 190°C, wells must be self-flowed, and power is generated from such wells in a flash-cycle or hybrid-cycle plant. In the temperature range of 190°C to nearly 220°C a self-flowing well’s net power capacity (irrespective of its productivity index) is less than the maximum of 7.3 MW for a pumped well. Above 220°C, the net power capacity of a well increases rapidly with increasing temperature and productivity index, and there is no practical upper limit. The maximum net power capacity available from an EGS well depends on reservoir depth and local temperature gradient; the optimum depth being increasingly shallow for higher temperature gradients. The trend of decrease in the optimum depth with temperature gradient applies whether this optimum is defined in terms of the maximum net MW capacity of a well or the minimum drilling cost per net MW capacity.

INTRODUCTION

Above a temperature level of 250°C, the net power capacity available from a geothermal well is a function of the well’s productivity index, reservoir temperature and reservoir steam saturation. There is no reasonable way to generalize what the maximum net power capacity from such a well might be; only actual drilling and testing of the well can confirm its net power capacity. On the other hand, below a temperature of 250°C, certain practical generalizations about a well’s maximum net power capacity are possible, as shown in this paper.

A well can be pumped unless the fluid temperature is higher than 190°C (the present limit of operating temperature for commercial downhole pumps, both line-shaft and electrical submersibles). Above a temperature of 190°C, a well must be self-flowed. Based on the data from several thousand geothermal wells worldwide, it is seen that reservoirs with temperatures lower than 190°C contain single-phase water; that is, there is no steam saturation in the reservoir. In fact, steam saturation in the reservoir is extremely rare below a temperature of about 220°C. Above 220°C, the presence of saturation becomes more likely as temperature increases. A well hotter than 220°C cannot be pumped, even if there were no limit to the operating temperature of a pump, because the presence of gas or steam in the reservoir fluid would cause cavitation in the pump. Therefore, we have conducted this analysis for three separate regimes of reservoir temperature:

- 100°C (which is the practical lower limit of temperature for commercial power generation) to 190°C;
- 190°C to 220°C; and
- 220°C to 250°C.

In addition, we present certain generalizations about the net generation capacity and optimum drilling depth of a well in an Enhanced Geothermal System (EGS).

Table 1 summarizes the various possible combinations of well flow mechanisms (pumping or self-flowing) and power cycles (binary, flash or hybrid). Each of the combinations shown in Table 1 has been put into practice somewhere in the U.S. However, for the purpose of this study, we assume the most common combinations of well flow mechanism and power cycle seen today: pumped wells with binary-cycle power generation for the
temperature range of 100°C to 190°C; and self-flowing wells with flash-cycle or hybrid-cycle power generation above 190°C. For EGS wells, we have considered a vertical temperature gradient of 50°C/km to 200°C/km, which is the most likely range for potential EGS sites in the U.S.

Table 1. Various Well Flow Mechanisms and Power Cycle Alternatives in Use

<table>
<thead>
<tr>
<th>Power Generation Cycle</th>
<th>Pumped Well</th>
<th>Self-Flowing Well</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Single-Stage Flash</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Stage Flash</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Hybrid</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Steam Turbine</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

METHODOLOGY

In a pumped well, the water level must lie above the pump intake to avoid pump cavitation. For any given pump setting depth, the maximum available pressure drawdown (\(\Delta p\)) in a pumped well without the risk of cavitation can be estimated from:

\[
\Delta p = p_i - (h-h_p)G - p_{sat} - p_{gas} - p_{fr} - p_{sm}
\]

Where:
- \(p_i\) = initial static reservoir pressure,
- \(h\) = depth to production zone,
- \(h_p\) = pump setting depth,
- \(G\) = hydrostatic pressure gradient at production temperature,
- \(p_{sat}\) = fluid saturation pressure at production temperature,
- \(p_{gas}\) = gas partial pressure,
- \(p_{vac}\) = net positive suction head required by the pump,
- \(p_{fr}\) = pressure loss due to friction in well between \(h\) and \(h_p\), and
- \(p_{sm}\) = additional safety margin to ensure cavitation does not occur at pump intake.

The pressure loss due to friction (\(p_{fr}\)) in equation (1) can be calculated as follows:

\[
p_{fr} = \frac{f \rho V^2}{2Gd} (h-h_p)
\]

Where:
- \(f\) = Moody friction factor,
- \(V\) = fluid velocity in the well,
- \(\rho\) = fluid density,
- \(d\) = internal diameter of the wellbore, and
- \(g\) = gravitational unit conversion factor.

The maximum available pressure drawdown can be calculated from equations (1) and (2). The pump can be set as deep as 457 m (1,500 feet) if a line shaft pump is used, but if an electric submersible pump is used, it can (in theory) be set considerably deeper. However, experience with electric submersible pumps to date has not been satisfactory. We have assumed a maximum pump setting depth of 457 m so that either line-shaft or electric submersible pumps can be used. From the value of the productivity index (PI) of a well and maximum allowable pressure drawdown, one can calculate the maximum available production rate (W) using:

\[
W = (PI) \cdot (\Delta p)
\]

Where \(\Delta p = p_i - p\)

In equation (4), \(p_i\) is initial static pressure in the reservoir and \(p\) is flowing bottom hole pressure at the well, which will decline with time if the well is produced at a constant rate \(W\). It should be noted that \(\Delta p\) is more commonly defined as \((\bar{p} - p)\), where \(\bar{p}\) is the average static reservoir pressure. Therefore, for a well flowing at a constant rate, \(p\) (and consequently PI) declines with time. This decline trend in PI is a function of the hydraulic properties and boundary conditions of the reservoir, and interference effects between wells (if more than one well is active). For such estimation, it is customary to utilize the so-called “Line-Source Solution” of the partial differential equation describing transient pressure behavior in a porous medium filled with a single-phase liquid (Earlougher, 1977). This solution gives the production rate (\(W\)) from a single well in an infinite system as:

\[
W = \frac{2\pi k h p (\Delta p)}{\mu p_D}
\]

where:
- \(k\) = reservoir permeability,
- \(h\) = net reservoir thickness,
- \(kh\) = reservoir flow capacity,
- \(\rho\) = fluid density,
- \(\mu\) = fluid viscosity, and

\(p_D\) is a dimensionless variable that is a function of time.

In equation (5), \(p_D\) is given by:

\[
p_D = \frac{t_D}{2\pi E\left(\frac{-r^2_D}{4t_D}\right)}
\]

where:
- \(t_D\) = dimensionless time
- \(E\) = (kh) / (ctwkc
- \(c_t\) = total compressibility of rock and fluid,
- \(\phi\) = reservoir porosity,
- \(r_D\) = dimensionless radius
- \(r_w\) = wellbore radius
flowing wellbore pressure is being considered),
\[r_w = \text{wellbore radius, and} \]
\[t = \text{time}. \]

In equation (6), \(Ei \) represents the Exponential Integral, defined by
\[
Ei(-x) = -\int_{-\infty}^{x} \frac{e^{-u}}{u} \, du \quad (7)
\]

Equation (5) is true if the wellbore skin factor is zero, that is, if the wellbore flow efficiency is 100%, the well being neither damaged nor stimulated. If the skin factor is positive (that is, the wellbore is damaged), for the same flow rate \(W \), there will be an additional pressure drop given by:
\[
\Delta p_{\text{skin}} = \frac{W \mu}{2\pi (kh) \rho} \cdot s \quad (8)
\]

Productive geothermal wells usually display a negative skin factor, which implies a “stimulated” well (that is, the wellbore flow efficiency is greater than 100%), because such wells intersect open fractures.

The next step is to estimate the net power available from the production rate of \(W \).

It is possible to estimate the fluid requirement per kilowatt power capacity, or kilowatt capacity available from a given fluid supply rate, from:

Electrical energy per kg of fluid = \(e \cdot W_{\text{max}} \quad (9) \)

Where \(e = \) utilization efficiency of the power plant, and
\[W_{\text{max}} = \text{maximum thermodynamically available work per kg of fluid}. \]

\(W_{\text{max}} \) in equation (9) is derived from the First and Second Laws of Thermodynamics:
\[
dq = c_p dT \quad (10)
\]
\[
dW_{\text{max}} = dq(1-T_o/T) \quad (11)
\]

Where \(c_p = \) specific heat of water,
\[T = \text{resource temperature (absolute), and} \]
\[T_o = \text{rejection temperature (absolute)}. \]

For calculation of power capacity, \(T_o \) can be assumed to be the average ambient temperature (assumed to be 15°C or 288°K). For modern water-cooled binary power plants, a value of 0.45 can be assumed for utilization efficiency. From the above equations, the fluid requirement per MW (gross) generation, not counting the parasitic load of production and injection pumps and power plant auxiliaries, can be estimated. The next step in this analysis is to estimate the fluid production capacity of the pumped wells, from which the parasitic power needed for pumping and the net power capacity at the wellhead could then be calculated.

The power required for pumping must be subtracted from the gross power available from the pumped well. The power required by a pump operating at the maximum allowable drawdown condition is given by:

\[
P_{\text{pumping}} = \frac{(W \cdot H/E_p + h_p \cdot L)/E_m}{(12)}
\]

Where \(H = \) total delivered head,
\[L = \text{shaft horsepower loss per unit length}, \]
\[E_p = \text{pump efficiency}, \]
\[E_m = \text{motor efficiency}. \]

In equation (12), \(H \) is given by:
\[
H = (p_d - p_{\text{sat}} - p_{\text{gas}} - p_{\text{sm}})/G + h_p \quad (13)
\]

Where \(p_d = \) pump discharge pressure.

Figure 1 shows an example of calculated initial gross and net power capacities of a 3,800 m deep well, with a productivity index of 10 l/s/bar, as a function of pump setting depth. Table 2 presents the various parameters we have used in this exercise.

Table 2. Parameters used for Analysis of Pumped Flow

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productivity Index:</td>
<td>Variable</td>
</tr>
<tr>
<td>Reservoir Temperature:</td>
<td>Depends on depth</td>
</tr>
<tr>
<td>Static Reservoir Pressure:</td>
<td>Hydrostatic</td>
</tr>
<tr>
<td>Gas partial pressure:</td>
<td>0</td>
</tr>
<tr>
<td>Pump suction pressure:</td>
<td>3.75 bar</td>
</tr>
<tr>
<td>Pressure safety margin:</td>
<td>0.68 bar</td>
</tr>
<tr>
<td>Relative roughness:</td>
<td>0.018 cm</td>
</tr>
<tr>
<td>Casing diameter:</td>
<td>9.5/8 inches</td>
</tr>
<tr>
<td>Pump discharge pressure:</td>
<td>7.2 bar (g)</td>
</tr>
<tr>
<td>Pump efficiency:</td>
<td>0.75</td>
</tr>
<tr>
<td>Motor efficiency:</td>
<td>0.95</td>
</tr>
<tr>
<td>Power loss per unit length of pump shaft (assuming electric submersible pump):</td>
<td>0</td>
</tr>
<tr>
<td>Rejection temperature:</td>
<td>21°C</td>
</tr>
<tr>
<td>Utilization factor:</td>
<td>0.45</td>
</tr>
<tr>
<td>Parasitic load factor above ground</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Figure 1. Net MW capacity of a pumped well as a function of pump setting depth.
We have also considered self-flowing wells tapping a reservoir at a temperature of 190°C or more. This flow behavior analysis has been conducted by numerical wellbore simulation based on the estimated PI of the well; Table 3 summarizes the important assumptions.

Table 3. Parameters used for Analysis of Self-Flowing Wells

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productivity index:</td>
<td>Variable</td>
</tr>
<tr>
<td>Well depth:</td>
<td>Variable</td>
</tr>
<tr>
<td>Well casing diameter below the pump:</td>
<td>9-5/8 inches</td>
</tr>
<tr>
<td>Well casing diameter above the pump intake:</td>
<td>13 3/8 inches</td>
</tr>
<tr>
<td>Reservoir temperature:</td>
<td>Variable</td>
</tr>
<tr>
<td>Static reservoir pressure:</td>
<td>Hydrostatic</td>
</tr>
<tr>
<td>Gas content in water:</td>
<td>nil</td>
</tr>
<tr>
<td>Relative roughness of casing wall:</td>
<td>0.018 cm</td>
</tr>
<tr>
<td>Steam separation pressure:</td>
<td>4.46 bar (g)</td>
</tr>
<tr>
<td>Steam requirement per MW generation:</td>
<td>2.27 kg/s</td>
</tr>
</tbody>
</table>

Numerical wellbore simulation allows the estimation of wellhead power capacity versus flowing wellhead pressure, taking into account hydrostatic, frictional and acceleration pressure gradients, wellbore heat loss, phase change, steam separator pressure and steam required by the power plant per MW. Figure 2 is an example of the calculated “deliverability curve” of a 2,743m (9,000 foot) deep self-flowing well for a range of productivity index values.

Figure 2. Flowing wellhead pressure versus flow rate at 244°C.

Figure 2 presents the simulated wellhead pressure as a function of the total flow rate; using the assumption in Table 3, the net MW capacity for each PI can be calculated from their respective deliverability curves.

RESULTS

Data from commercial geothermal wells show a wide range in PI, from about 1 l/s/bar for marginally sub-commercial wells to as high as 100 l/s/bar for exceptionally prolific wells; a good production well typically shows a PI on the order of 10 l/s/bar. It is also seen that the flow capacity (that is, permeability-thickness product) of a commercial well generally lies in the range of 1 to 100 Darcy-meter (D-m) and geothermal wells typically display a small, negative skin factor. To decide on the appropriate range of PI to be used in this study, we calculated the PI for these estimated ranges of flow capacity (usually denoted as “kh” in the literature) and a skin factor range of 0 to -1.

Figure 3 shows the calculated PI versus time for various flow capacity and skin factors values considered. Based on Figure 3, we chose 2 to 30 l/s/bar as the broadest realistic range of PI for commercial wells producing from a 100°C to 250°C reservoir.

Figure 3. Calculated Productivity Index vs. Time

PUMPED WELLS

Figure 1 shows an example of the calculated gross and net power capacities versus pump-setting depth for a pumped well with a PI of 10 l/s/bar and producing from a 185°C reservoir. The vertical separation between the gross and net MW capacity curves in Figure 1 represents the parasitic power consumed. This figure shows that with increased pump setting depth, the gross and net capacities increase slowly, but the parasitic load increases rapidly. Given the practical limit of 457m (1,500 feet) in pump-setting depth today, this well has net generation capacity of 6.3 MW.

Figure 4 presents the calculated net power capacity of a pumped well versus temperature for a range of PI values. This figure shows that for any PI value, net power capacity of the well increases monotonically with temperature until it reaches a maximum at a temperature level of 190°C to 200°C, depending on the well’s PI. After reaching this maximum, the net capacity of the well declines with increasing temperature. This decline in net capacity with temperature reflects the decline in the maximum available drawdown, which, in turn, is caused by the increasing vapor pressure with temperature.

Figure 4 shows that little gain in net well capacity can be achieved by raising the operating temperature limit of commercial pumps beyond 190°C. On the
other hand, Figure 1 indicates that increasing the maximum possible pump-setting depth beyond 457m and the maximum possible pumping rate beyond 160 l/s (2,500 gallons per minute) will increase the net power capacity available from a well. Figure 4 shows that irrespective of how high the PI is, a pumped well today cannot deliver significantly more than about 7.3 MW(net).

![Figure 4. Net MW Capacity of a Pumped Well versus Temperature (binary-cycle power generation)](image)

Figure 5 presents the same results in terms of the net power capacity versus PI for various temperatures. This figure shows that for any temperature level, the net capacity is very sensitive to PI when PI is low; for prolific wells, the net capacity is not too sensitive to PI. Furthermore, Figure 5 confirms that for all PI values, the net capacity peaks in the 190°C to 200°C range.

![Figure 5. Net MW Capacity versus Productivity Index of a Pumped Well (457m Pump-Setting Depth).](image)

SELF-FLOWING WELLS

Figure 2 presents the calculated “deliverability curves” of a self-flowing well with a range of PI values producing from a 244°C reservoir. This figure shows the wellhead pressure versus total production rate (steam plus water) from the well. From this figure, we can estimate the net MW capacity of the well for various PI values given an assumed separation pressure and steam requirement per MW (Table 3). Similar calculations were conducted for various temperature and PI values.

Figure 6 presents the calculated net power capacity versus temperature of a self-flowing well for various PI values. This figure shows that unlike the pumped wells, there is no upper limit in net MW capacity of a self-flowing well, which is a nearly linear function of temperature, the slope of this linear trend increasing slightly with increasing PI.

![Figure 6. Net MW Capacity versus Temperature for Self-flowing Wells (flash-cycle power generation).](image)

Figure 7 is a composite of the results for pumped and self-flowing wells. This figure shows that between 190°C and 220°C, a self-flowing well has less power capacity than the maximum net capacity of a pumped well with the same PI.

![Figure 7. Net MW Capacity of a Well versus Temperature.](image)

If a net power capacity higher than 7.3 MW is sought, the reservoir temperature must be greater than about 220°C; for exceptionally prolific wells, this “break point” may be as low as 210°C. In other words, if the reservoir temperature is less than 220°C, the maximum available net power capacity of a geothermal well is 7.3 MW whether the well is pumped or self-flowed and irrespective of how high its PI is. The only way this barrier in net capacity can be breached is by increasing the maximum pumping rate possible from a pump and making it practically
feasible to deepen pump setting beyond 457m (1,500 feet). However, for self-flowing wells, there appears to be no way to increase the net capacity beyond 7.3 MW unless reservoir temperature is greater than about 220°C.

ENHANCED GEOThERMAL SYSTEM WELLS

In an Enhanced Geothermal System (EGS), the reservoir is created by hydraulic stimulation of low permeability rock. Unlike hydrothermal projects, where the reservoir already exists at a certain depth, an EGS project allows significant flexibility in choosing the depth range within which to create a reservoir, provided that the depth range has suitable geologic formations and appropriate *in situ* stress conditions. Since temperature increases with depth and there is flexibility as to depth, the question arises: should the wells for an EGS project be the deepest possible, or is there a practically optimum depth? This issue is considered below.

The temperature versus depth at an EGS site is dictated by the local vertical temperature gradient, which ranges from 50°C/Km to 200°C/Km at potential EGS sites in the U.S. Assuming pumped wells, we have calculated the maximum net power capacity versus depth for various temperature gradient values; Figure 8 presents the results.

![Figure 8. Maximum net MW capacity of a pumped well versus depth.](image)

This figure shows that for any temperature gradient, the maximum net capacity increases nearly linearly with depth until it reaches a maximum; thereafter the capacity decreases with depth. The depth at which this maximum net capacity is reached becomes shallower as temperature gradient increases. Let us now review the commercial consequences of the observations from Figure 8.

Figure 9 shows an empirical correlation of the cost of drilling a geothermal well (in 2003 dollars) versus well depth (GeothermEx, 2004); this correlation is also similar to that of MIT (2006). From Figures 9 and 10, we have estimated the trend in the minimum drilling cost per net MW capacity achievable from an EGS well versus its depth and for a range of temperature gradients.

![Figure 9. Correlation of drilling cost vs. well depth.](image)

Figure 9. Correlation of drilling cost vs. well depth.

Figure 10 shows that for any temperature gradient, drilling cost per net MW well capacity goes through a minimum at a certain depth, which would be the most optimum depth for a commercial EGS project, assuming that appropriate *in situ* stress conditions and suitable rock formations will be present at that depth.

![Figure 10. Minimum drilling cost per net MW well capacity versus depth.](image)

Figure 10. Minimum drilling cost per net MW well capacity versus depth.

Figure 11 presents the optimum depth for an EGS project versus the local temperature gradient; one plot in this figure considers the maximum net MW capacity of a well as the optimization criterion, and the other plot considers the minimum drilling cost per net MW as the optimization criterion.

![Figure 11. Optimum drilling depth of an EGS Project.](image)

Figure 11. Optimum drilling depth of an EGS Project.
It should be noted that Figure 11 is based on pumped wells. However, the results apply equally for self-flowing wells up to a reservoir temperature of nearly 220°C, because the maximum net power from a self-flowing well does not exceed that of a pumped well of the same PI for temperatures less than about 220°C (Figure 7).

CONCLUSIONS

1. The net power available from a pumped geothermal well reaches a maximum of 7.3 MW at a temperature level of 190°C to 200°C.

2. The maximum operating temperature of commercial geothermal pumps today is 190°C; any improvement in operating temperature limit of pumps will not increase net power capacity.

3. If it becomes practical for pumps to be set deeper and have higher pumping rates than feasible now, the maximum net capacity would be higher.

4. Over the temperature range of 190°C to 220°C, wells need to be self-flowed; between 190°C to nearly 220°C, a self-flowing well will not exceed the maximum net capacity of 7.3 MW available from a pumped well.

5. Whether a well is pumped or self-flowed, and whatever its PI is, the maximum net capacity of a geothermal well cannot exceed 7.3 MW up to a temperature level of at least 215°C.

6. There is no obvious limit to the net power capacity of a geothermal well producing from a reservoir above 220°C; reservoir temperature and reservoir steam saturation along with the well’s PI are the determining factors.

REFERENCES

