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The 1989 Loma Prieta earthquake imaged from
inversion of geodetic data

Théra Arnadéttir ! and Paul Segall
Department of Geophysics, Stanford University, Stanford, California

Abstract. We invert geodetic measurements of coseismic deformation from the
1989 Ms7.1 Loma Prieta earthquake to determine the geometry of the fault and
the distribution of slip on the fault plane. The data include electronic distance
measurements, Global Positioning System and very long baseline interferometry
vectors, and elevation changes derived from spirit leveling. The fault is modeled
as a rectangular dislocation surface in a homogeneous, elastic half-space. First, we
assume that the slip on the fault is uniform and estimate the position, orientation,
and size of the fault plane using a nonlinear, quasi-Newton algorithm. The best
fitting dislocation strikes N48°+ 4°W and dips 76°+ 9°SW, consistent with the
trend of the aftershock zone and moment tensor solutions. Bootstrap resampling
of the data is used to graphically illustrate the uncertainty in the location of
the rupture plane. The 95% confidence envelope overlaps the aftershock zone,
arguing that there is not a significant discrepancy between the geodetic data and
the aftershock locations. Second, we estimate the slip distribution using the best
fitting uniform slip fault orientation but increase the fault length to 40 km and
the downdip width to 18 km. The fault is divided into 162 subfaults, 18 along
strike and 9 along dip. Each subfault is allowed to have constant right-lateral
and reverse components of slip. We then solve for the slip on each subfault that
minimizes a linear combination of the norm of the weighted data residual and the
roughness of the slip distribution. The smoothing parameter, which determines
the relative weight put on fitting the data versus smoothing the slip distribution,
is chosen by cross validation. Simulations indicate that cross-validation estimates
of the smoothing parameter are nearly optimal. The preferred slip distribution is
very heterogeneous, with maximum strike slip and dip slip of about 5 and 8 m,
respectively, located roughly 10 km north of the hypocenter. There is insignificant
dip slip in the southeastern most part of the fault, causing the rake to vary from
nearly pure right-lateral in the southeast to oblique right-reverse in the northwest.
The change in rake is consistent with a uniform stress field if the fault dip increases
by about 10° toward the southeast, as indicated by the aftershock locations. There
was little slip above 4 km depth, consistent with the observation that there was
little, if any, surface rupture.

Introduction

The Ms7.1, 1989 Loma Prieta earthquake was lo-
cated within a dense network of seismic and geodetic
stations, and the event was large enough to be well
recorded by global seismic stations. This provided an
unusual opportunity to study the earthquake source
mechanism by inversion of local geodetic data, as well as
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teleseismic and local seismic data, including strong mo-
tion acceleration data. Numerous studies of the Loma
Prieta earthquake have been published in the July, Au-
gust, and September 1990 issues of Geophysical Re-
search Letters [McNally and Ward, 1990] and the Octo-
ber 1991 special issue of the Bulletin of the Seismolog-
ical Society of America [Hanks and Krawinkler, 1991].

Despite extensive research, a number of important
questions about the earthquake remain. Early inver-
sions of geodetic data had found the best fitting uni-
form slip dislocation surface to be located a few kilo-
meters west of the zone of aftershocks [Lisowski et al.,
1990; Marshall et al., 1991]. In particular, Marshall et
al. [1991] found from modeling the coseismic elevation
changes that the rupture surface was offset ~ 3 km
southwest of the aftershocks. Given the heterogene-
ity of the mechanisms, they suggested that the rup-
ture surface might be distinct from the aftershock zone.

21,835



21,836

Eberhart-Phillips and Stuart [1992] suggested that this
discrepancy was due to contrast in elastic properties
across the fault. Arnaddttir et al. [1992] showed that
in the case of the leveling data, the major part of the
discrepancy disappeared if one accounted for correla-
tions, which are inherent in leveling data, in the esti-
mation procedure. In the case of the Lisowski et al.
[1990] data, Arnaddttir et al. [1992] found that part of
the discrepancy was accounted for by failure of the trial
and error methods used to find the best fitting disloca-
tion geometry. In a reexamination of the leveling data,
Marshall and Stein [1994] use a two-dimensional bound-
ary element method to approximate the effect of elastic
heterogeneity in three dimensions. They find that ac-
counting for a compliant wedge in the hanging wall of
the fault, as suggested by Eberhart-Phillips and Stuart
[1992], and the correlations in the leveling data, as sug-
gested by Arnaddttir et al. [1992], that the discrepancy
is insignificant. Even so, there is a clear tendency for
the estimated dislocation surfaces to be offset toward
the southwestern edge of the aftershock zone. The prob-
lem has not been fully resolved for a number of reasons:
(1) None of the previous studies simultaneously inverted
all of the available geodetic data; (2) many studies used
trial and error estimation methods and did not compute
rigorous uncertainties in the fault location; and (3) pre-
vious studies have not used Green’s functions appropri-
ate for a laterally varying three-dimensional half-space.

In this study we make use of all the high-quality
geodetic data obtained before and after the earthquake.
By combining all the geodetic data sets, we get better
information about the three-dimensional deformation
field, thus obtaining better constraints on the geome-
try of the fault that ruptured and the amount of slip.
Furthermore, we have developed a method to invert
geodetic data to obtain the best uniform slip disloca-
tion geometry using a nonlinear estimation method. We
also introduce the use of a bootstrap method for deter-
mining confidence limits in the geometric parameters.
Results here are limited to uniform elastic half-spaces;
however, Du et al. [1994] show how first-order perturba-
tion methods can be used to approximate Green’s func-
tions in three-dimensional media with laterally varying
elastic properties.

A second unresolved problem has been to determine
how the slip is distributed on the fault plane. Several in-
versions of the strong motion data have been conducted
for spatially varying fault slip [Beroza, 1991; Hartzell et
al., 1991; Steidl et al., 1991; Wald et al., 1991; Horton
et al., 1994; Steidl and Archuleta, 1994]. Determina-
tion of the static slip distribution from strong motion
data is complicated by the fact that the data depend
on slip amplitude, rupture time, and rise time. Geode-
tic data, on the other hand, are independent of rupture
dynamics. The models derived from the strong motion
data (some of which also use geodetic data) have many
features in common. Most models find two areas of
concentrated slip in the northwest and southeast parts
of the fault, with surprisingly little slip updip from the
hypocenter. To date, there have not been inversions of
the full geodetic data set to compare these results to.
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In this study we conduct inversions of the geodetic data
to determine the spatial distribution of fault slip.

A surprising result of the slip models presented by
Beroza [1991] and Steidl et al. [1991] is the large varia-
tion of rake as a function of position on the fault. The
rake changes from nearly pure thrust in the northwest
part of the rupture to almost purely right-lateral strike
slip in the southeastern part. On the other hand, the
model by Wald et al. [1991] has a similar, oblique rake
in both areas. The results of Hartzell et al. [1991] show
intermediate variations. Analysis of the leveling data
by Marshall et al. [1991] also suggests more dip slip to
the northwest and more strike slip to the southeast. We
explore this question further by inverting the geodetic
observations and suggest possible mechanisms for the
variation in slip direction.

Geodetic Data

The data used in this study are summarized in Fig-
ure 1. We analyze electro-optical distance measure-
ments (EDM) and Global Positioning System (GPS)
measurements collected by Lisowski et al. [1990], very
long baseline interferometry (VLBI) data reported on
by Clark et al. [1990], and GPS data reported on by
Williams et al. [1993]. The GPS and VLBI data give
changes in the three-dimensional relative position vec-
tors between stations. The EDM measurements give
only the change in the baseline length between stations.

The EDM and GPS data collected by Lisowsk: et
al. [1990] were corrected for interseismic deformation
as well as for coseismic deformation caused by the
1979 Coyote Lake, 1984 Morgan Hill, and the 1986
Mount Lewis earthquakes. The GPS data collected by
Williams et al. [1993] in the Santa Cruz-Watsonville
area span a very short interval and require no inter-
seismic correction. The VLBI measurements at Fort
Ord were made at the station Fort Ord S, whereas the
GPS measurements were made a few hundred meters
away at Brush 2. Since both are several source depths
away from the epicenter one can assume that these two
stations moved by the same amount in the earthquake.
This allows us to determine the displacements of the en-
tire network relative to VLBI stations on stable North
America (Figure 2a). The largest horizontal displace-
ment is 41 cm at station Traill.

We also analyze the spirit leveling data reported
on by Marshall et al. [1991]. Leveling networks in
the Loma Prieta area were resurveyed by the National
Geodetic Survey (NGS) and the U.S. Geological Sur-
vey (USGS) from February through June 1990 (Fig-
ure 1). The preearthquake surveys were performed by
NGS and USGS between 1948 and 1989. Lines 4, 5,
6, and 7, which span the interior of the network, were
measured in 1948-1953. These are the least precise mea-
surements (third-order, single-run leveling), and several
bench marks were destroyed between the preearthquake
and postearthquake surveys. The leveling data were
corrected for subsidence induced by groundwater with-
drawal by Marshall et al. [1991]. The largest correc-
tions are 10-20 mm, in San Jose (lines 1 and 3) and
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Figure 1. A map of the San Francisco Bay Area in California showing major faults and coastline
(bold) and the network of geodetic stations used in this study. A few stations referred to in the
text are labeled. The triangles are EDM stations, the squares are GPS stations, the circles are
VLBI stations, and the dots are leveling bench marks. The GPS stations from Williams et al.
[1993] are shown with solid squares. The insert shows the leveling line numbers referred to in the
text. The main shock epicenter location is indicated with a star.

near Watsonville (line 2). They also applied small cor-

rections for the coseismic deformation due to the 1979.

Coyote Lake and 1984 Morgan Hill earthquakes (line 1).
The coseismic vertical displacements calculated from
the observed section height differences are shown in Fig-
ure 3a. The largest signal is 59 cm of uplift in the central
part of the network.

Inversion for Fault Geometry

Method

We start by determining the fault geometry that best
describes the observed surface deformation. The fault is
represented by a rectangular dislocation, with uniform
slip, embedded in a homogeneous, isotropic, elastic half-

space [e.g., Okada, 1985]. Figure 4 shows the dislocation
model and the nine parameters that we estimate: fault
length L, width W, depth zo, dip §, strike ¢, location
(20, ¥0), strike slip SS, and dip slip DS. The slip on
the dislocation is initially assumed to be constant. In
a later section this assumption is relaxed, and we esti-
mate the spatial distribution of slip. We seek a set of
the nine fault parameters that minimize the weighted
residual sum of squares (RSS), r’£~!r. Here r is the
residual vector, the difference between the observed and
predicted data, and ¥ is the data covariance matrix.
This problem is nonlinear since the predicted surface
displacements are nonlinear functions of the fault ge-
ometry. We use a nonlinear optimization algorithm,
NPSOL [Gill et al., 1986], to find the set of fault pa-

rameters £ that minimizes ®(£), where ®(¢) = rTX1r.
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Figure 2. (a) Observed and predicted horizontal displacements from the best uniform slip

dislocation model. The surface projection of t
stations referred to in the text are labeled. (b)

he fault model is shown by a rectangle. A few
Location of the dislocation in cross section AA’.

The locations of aftershocks with M > 3.0 recorded from October 18 to October 31, 1989, are
shown with hexagons and the main shock epicenter is indicated by a star.

In this study, we employ the quasi-Newton method [Gill
et al.,; 1981] which is effective when the first and second
derivatives of the function ®({) are not simply com-
puted analytically. Quasi-Newton methods require only
that ®(£) be at least twice continuously differentiable.
In the quasi-Newton method, as in Newton’s method, a
quadratic model of the objective function ®(£) is con-

structed by taking the first three terms of the Taylor
series expansion about a point £:

. 1
Bip1 ~ Oy + VETSE, + 566{1%6& , (1)

where ®; = ®(&;), V®r = V®(x) is the gradient of @,
Hy = H(&:) is the second derivative matrix of ® (also
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Figure 3. (a) Interpolated contours of vertical displacements in centimeters, calculated from
observed section height differences. The locations of the bench marks are shown with dots.

called the Hessian), and 6£x = &r+1 — &k Since @ is a
stationary point at the minimum of equation (1),

3<I>k‘+1
96&k
Hence the quadratic function is minimized as a function
of 6&; by solving Newton’s equation

=0. (2)

Hyb8, = -V . 3)

The solution is the Newton search direction. NPSOL
solves equation (3) by Cholesky decomposition and
backsubstitution.

The quasi-Newton method is based on the fact that
an approximation to the curvature of a nonlinear func-
tion along a line can be computed from two values of
the gradient on the line without explicitly forming the
Hessian matrix. The curvature of ® along é¢ is given by
66T H6€, which can be approximated using only first-
order information:

6¢T Hy,6¢ m (V®ipy — VB:)T6E . (4)

We compute V®(£) numerically using a finite difference
approximation.

The algorithm works in the following manner: The
values of ®(£o) and V®(£o) are calculated for a given
starting value &. The next value, &, is calculated from
& = &o+6€, where 8¢ is a solution to equation (3), given
V®(&o) and H(). The initial value of the Hessian is
assumed to be the identity matrix, H(§o) = I. After
&1 has been computed, a new Hessian approximation
H(&,) is estimated by H(€1) = H(&o) + Uo, where Up is
an updating matrix, which takes into account the new
cuvature information. The updated Hessian must be
symmetric and positive definite. Then the next step is
calculated. This sequence is repeated until the solution
converges to a minimum, that is, until we find £ such
that ®(£) < ®(€) for all € # ¢.

NPSOL allows one to specify upper and lower bounds,
as well as linear and nonlinear constraints on the vari-
ables. For an unconstrained problem the following con-
ditions are necessary at the minimum: (1) The gradient
at the minimum is zero (V®(£) = 0) and (2) H(§) is
positive definite, that is, s H (é)s > 0 for all nonzero
vectors s. In the case of a constrained problem, con-
ditions 1 and 2 hold for all parameters not subject to
a constraint. If a parameter is at a bound, the con-
dition for a minimum is that the gradient is directed
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Figure 3. (b) Predicted vertical displacements from the best uniform slip model (in centimeters).
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Figure 3. (c) Weighted residual of the vertical displacements and the best uniform slip model for
the combined data. The weighted residual has units of o standard deviation. The solid triangle
shows the location of station HS3174 that has the largest residual, 200. The shaded region shows
the area of extensive ground cracks [from U.S. Geological Survey Staff, 1989].
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Figure 4. Dislocation model parameters: length along strike L, width along dip W, depth to
center zo, dip 6, strike ¢, location of center (zo,yo), right-lateral strike slip SS, and reverse dip

slip DS.

away from the bound, i.e., that the gradient is positive
at a lower bound and negative at an upper bound. We
place very broad upper and lower bounds on the fault
parameters and add a constraint that the upper edge of
the dislocation does not extend above Earth’s surface.

Confidence Intervals for Fault Parameters

To assess how well the model is constrained by the
data, it is important to estimate confidence intervals
for the model parameters. This is not a straightforward
procedure when the model is a nonlinear function of the
data. In this section we discuss two methods to estimate
95% confidence intervals for the fault parameters.

Approximate bounds are found by linearizing the
model around the minimum é . An ellipsoidal confidence
region for the parameters can by found from

m

o(¢a) = ()1 + F(m,n—m,1-a)] (5)

n—m
[Draper and Smith, 1981]. As before, ®(£) is the weighted
residual sum of squares (RSS) for the set of optimal
fault parameters . F(m,n — m,1 — a) is the F' dis-
tribution with m and n — m degrees of freedom at a
100 x (1 — a)% confidence level, where m is the number
of model parameters (here m=9) and n is the number
of data (here n=333). ®(£,) is the “cutoff” value of
the RSS for a given confidence level, and f:, are the
upper and lower bounds on the parameters é for that
confidence level. We find the confidence intervals for
the fault parameters allowing one parameter to vary
while the other parameters are fixed at their optimal
values. The advantage of the F test is that it is simple
and not computationally intensive. The drawbacks are
that the F' test assumes that the data errors are nor-
mally distributed and the confidence intervals are only
approximate, since ® is nonlinear.

We also construct confidence intervals using the boot-
strap method [e.g., Efron and Tibshirani, 1986]. We
draw a resample d,*, . --,d," at random from the orig-
inal data dy,---,d, with replacement, that is, allow-
ing individual data points to be sampled more (or less)
than once. We then estimate the model parameters
E* from the resampled data using the quasi-Newton al-
gorithm. The resampling and estimation steps are re-
peated B times yielding B independent estimates of the
model parameters. The parameter estimates are then
ordered such that 5’;‘[1] < ..o < é;‘[B]. The two-sided
100 x (1 —a)% bootstrap percentile method interval for
5 is [6*([%B]+1)’6*([(1—%)81-}—1)]7 where [%B] denotes the
integer part of §B. For example, if B = 2000, then the

95% confidence lower bound is 5[51]: while the upper
bound is @[1951]. The bootstrap percentile method is

based on the premise that the distribution of £*, the
bootstraped version of E, is similar to the unknown dis-
tribution of &.

The advantage of the bootstrap method is that it does
not make assumptions about the distribution of errors
in the data. Rather, the true distribution is built up
from the data by resampling. The disadvantages of the
bootstrap method is that it is computationally inten-
sive, and the confidence intervals are only approximate.
Better estimates of the confidence intervals can be con-
structed using a double-bootstrap method [e.g., Hall
and Martin, 1988], but that requires B? rather than B
resamples.

Results

We determine the optimal uniform slip dislocation
geometry using the methods described above (see Ta-
ble 1). The fault is found to be about 30 km long along
strike. It extends vertically from about 8 km to 12
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km depth, dips 76°southwest, and strikes N48°W, with
5.2 m of strike-slip and 4.6 m of dip-slip motion. The

geodetic moment is My = 2.9 x 10'° N m, assuming a

shear modululs of 3.0 x 101° Pa, and the rake is 139°.
This model is in good agreement with the major double-
couple orientation (strike of N52°4+ 3°W, dip of 67 +
5° and rake of 133°+ 8° ) and seismic moment (2.4 -
3.2 x10'® N m) estimated from seismic data [Wallace
et al., 1991]. We use 333 data (n) to estimate nine fault
parameters (m), so the solution has 324 degrees of free-

dom. The mean square error (MSE = - rTE"1r) is

12 and the misfit of the model is equal to vV MSE = 3.5.
The misfit for the leveling data alone (n = 209) and the
combination of EDM, GPS, and VLBI data (n = 124) is
3.5 for both sets of data, implying that the data sets are
weighted equally in the inversion and that neither data
set 1s fit very well. This is in part due to the uniform
slip assumption which is relaxed below.

Figure 2a compares the predicted horizontal displace-
ments for the uniform slip model with the observed dis-
placements. The simple model predicts the data fairly
well; the largest differences are 8.3 cm at Crowell and
8.0 cm at Porter. Figure 2b shows the location of the
model in the cross section AA’, relative to the location
of aftershocks with M > 3.0 recorded from October 18
to October 31, 1989. The imaged dislocation surface is
well within the zone of aftershocks. The lower edge of
the dislocation does not reach the depth of the hypocen-
ter. However, we observe a trade-off between the fault
width and the magnitude of the slip on the fault. A
wider fault with less slip produces a similar pattern of
surface displacements with only slightly higher residual.
This has also been observed in other studies [Arnadéttir
et al., 1992; Marshall et al., 1991; Snay et al., 1991].

Figures 3a and 3b show the observed and predicted
vertical displacements respectively. Figure 3c shows
the weighted leveling residuals, which are the section
height differences divided by the standard deviation of
the data and the square root of the section lengths [see

Arnadéttir et al., 1992]. The largest residuals are in
the area northwest of Loma Prieta peak, up to 200 at
bench mark HS3174 (shown with solid triangle in Fig-
ure 3c). The residuals for the rest of the network are
for the most part below 50.

Further examination of the residuals indicates three
outliers, leveling bench marks HS3174 and HS5203 and
the EDM baseline LP1-LP2 [Arnadéttir, 1993]. Large
shaking-induced gravitational spreading of ridges and
downslope movement was observed along Summit Road
and Skyland Ridge in the Santa Cruz Mountains [e.g.,
Ponti and Wells, 1991]. The shaded area in Figure 3c
shows the approximate location of this zone of inelas-
tic deformation. The stations with the largest residuals
are located in, or close to, this area. The large residuals
could therefore be due to inelastic deformation caused
by ground ruptures and land sliding, which would not
be predicted by the elastic model. Removing data from
these three stations decreases the misfit to 3.0 but does
not change the model substantially. The distribution
of residuals is not Gaussian; however, model estimates
based on minimization of the L; norm are not signif-
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icantly different from the least squares solutions pre-
sented here [Arnaddttir, 1993).

Figure 5 shows the misfit as a function of individ-'
ual fault parameters, where one parameter is allowed
to vary and the other parameters are fixed at their op-
timal values. Models with misfit less than 3.7 are within
the 95% confidence limit (equation (5)). Figure 5 does
not show the correlation between the various fault pa-
rameters, for example the trade-off between the fault
width and the amount of slip on the fault.

We also use the bootstrap method to estimate 95%
confidence intervals. The results of 2000 models from
bootstrap resamples of the data are shown in Table 1.
Comparing the first and second row of Table 1, we see
that the mean of the bootstrap estimates are in good
agreement with the optimal model determined using all
the data; the largest difference is in the fault length
(3 km), but the value is still within the uncertainty
estimated by both methods. The uncertainties in the
model parameters estimated by the bootstrap percentile
method tend to be larger than those determined by the
F test. In particular, the large range in the fault width
and amount of slip obtained from the bootstrap models
reflects the trade-off between these parameters.

To illustrate graphically the results of the bootstrap
calculations, Figure 6 shows a cross section of the “den-
sity” of bootstrap estimated fault models that are within
the 95% confidence level. Figure 6 was constructed by
girding the area in the cross section. The density in
each element was calculated by summing the normal-
ized distance all the bootstrapped dislocation surfaces
traversed each element. The density is shown with a
gray shade, where the darker shade implies a larger
number of estimated fault models pass through that re-

_gion. The solid line is the mean of the bootstrap models
and the dashed line is the optimal model obtained using

all the data. The extent of the shaded region in Fig-
ure 6 demonstrates the variability in the possible fault
models that fit the geodetic data reasonably well. The
area just southwest of the mean bootstrap model (solid
line) has a higher density of fault models and narrower
aperture than the area to the northeast. The shaded
region widens with depth, as we would expect, since
the location of the upper edge of the fault is better con-
strained than the lower edge. From this we conclude
that the data can be fit with faults located in the after-
shock zone, although there is still a slight bias toward
the southwest edge of the aftershock zone.

The uncertainty in the fault location is in part due
to the paucity of stations near the fault. Data from
Loma Prieta peak and surrounding area are important
in determining the location of the fault as well as the
fault dip and width. None of the models derived from
geodetic or seismic data produce good fit to these data.
Lisowski et al. [1994] note that there was considerable
relative coseismic motion between the stations on Loma
Prieta peak. There were no ground cracks observed,
but strong shaking in the earthquake may have caused
monument instability in the area.

We have experimented with more complicated fault
geometries, including adding a shallow vertical fault
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Figure 5. Misfit as a function of fault parameters for the uniform slip model that best fits the
Loma Prieta geodetic data used in this study. Each parameter is varied while keeping the other
parameters fixed at their optimal values. The dashed line is the “cutoff” value for the misfit from
the F' test. The 95% confidence level is the range of values of the parameters that have misfits

less than 3.7.

segment, similar to the “kinked” model of Snay et al
[1991]. The shallow vertical fault segment is poorly con-
strained by the data. With this geometry, we did not
find any models that significantly improved the fit to
the data and were at the same time consistent with the
aftershock locations. We also allowed two independent
faults; one fault located northwest of the epicenter and
the other to the southeast. The best-fit model, in this
case, provided a slightly better fit (misfit of 3.4) to the
data than the single fault model. The geometry is sim-
ilar to the single fault uniform slip model, except for
the rake and slip. The rake on the northwest fault is
134°, with about 8 m of slip, while the rake on the
southeast fault is 161°, with about 2 m of slip. This is
an indication that the geodetic data are better fit by a
heterogeneous slip distribution, which is addressed in a
later section.

We also attempted to see if the geodetic data are ca-
pable of resolving dilatancy during the earthquake by
allowing for relative motion normal to the fault plane.
This yielded a slight fault compaction equivalent to 3%
of the slip, however the compaction is not significant.
Savage et al. [1994] suggest that 10 cm of fault com-
paction occurred following the Loma Prieta earthquake,
suggesting that comparable amounts of dilatancy ac-
companied the earthquake. Constraining the fault dila-
tion to 10 cm increases the misfit to the data; however,
the model is still acceptable at the 95% confidence level.
We conclude that the geodetic data do not place useful
constraints on the amount of dilatancy for this event.

Simulations

Inversions of strong motion data demonstrate that
the slip was spatially heterogeneous [Beroza, 1991; Steidl
et al., 1991; Wald et al., 1991]. To investigate how the
assumption of uniform slip affects the estimated fault
geometry when the slip is in fact nonuniform, we gen-
erated synthetic data (EDM, GPS, VLBI, and leveling)
from a forward model with spatially varying slip. Noise
was added to the calculated data such that the signal
to noise ratio (2d7£-1d)!/? is comparable to that in
the Loma Prieta geodetic data set.

The synthetic model fault extends from 2 to 20 km
depth along dip, 40 km along strike, dips 76°SW, and
has a strike of N48°W. Figure 7 shows the slip distri-
bution on the fault. There are two slip maxima in this
model, one in the northwest part of the fault and the
other in the southeast part of the fault. The model has
the same magnitude of strike slip and dip slip, so the
rake is everywhere 135°. The fault parameters of the
synthetic model are given in Table 1. To compare this
model with uniform slip models, we use the centroid
depth as the depth to the fault center and take the av-

-erage of the strike-slip and dip-slip magnitudes on the

fault.

The synthetic data are then inverted to obtain the op-
timal fault geometry. We found a consistent set of fault
parameters (see Table 1) for a range of starting models.
We see from Table 1 that all the fault parameters are
well resolved. The estimated average rake is 134°, while
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the actual rake is 135°. The estimated moment is 4%
greater than the actual moment, and the predicted fault
dip is 2° greater than in the actual model. The confi-
dence intervals calculated from the bootstrap (Table 1)
include the correct value for all of the parameters.

The misfit, the square root of the normalized weighted
residual sum of squares, to the model determined by
the quasi-Newton optimization is 1.11. According to
equation (5), models with misfits in less than 1.14 are
within the 95% confidence level. Interestingly, the mis-
fit for the correct fault geometry with uniform slip is
2.04, which is well outside the 95% confidence level.
This suggests that the large misfit to the uniform slip
model that we observe in the Loma Prieta data is in
large part due to spatial variations in slip.

Figure 8 shows the location of the estimated and ac-
tual fault models in map and cross section. They are
virtually identical. Most of the slip in the example is be-
low 6 km depth which biases the estimated uniform slip
model to greater depth. The centroid depth of the uni-
form slip estimate is close to the correct centroid depth
of the distributed-slip model. In summary, the results
from these simulations indicate that the estimated ge-
ometry assuming uniform slip is likely to be very close
to the actual fault geometry, even if the slip is hetero-
geneous. In the next section we use the estimated fault
geometry and invert for the slip distribution.

Inversion for Distributed Slip

Method

Our starting point is the fault geometry found in the
previous section. We increase the fault length along
strike from 30 km to 40 km, and the downdip width
from 5 km to 18 km, to allow the slip to taper to zero
at the fault edges. The fault has a dip of 76°SW and
strikes N48°W. We adopt a discrete basis and divide
the fault into a grid of 162 subfaults, with uniform slip
in both the strike-slip and dip-slip components. Each
subfault extends 2.22 km horizontally and 2.0 km ver-
tically.

The geodetically determined surface deformation (the
data d) is a linear function of the slip distribution on
the fault s of the form

d=Gs+e, (6)

where G is a matrix of Green’s functions and € is
the measurement error. The Green’s functions are
calculated for a homogeneous, elastic half-space [e.g.,
Okada, 1985]. We assume that the errors are nor-
mally distributed with mean zero and covariance ma-
trix £, € ~ N(0,X). We transform the problem to
d’ = G's + €, where € ~ N(0,I) and I is the identity
matrix. Here, d' = T'd and G’ = T'G, where T is the
weight matrix given by the inverse of the Cholesky fac-
torization of the data covariance matrix, -1 = 77 T.
We drop the primes from the notation in the remain-
der of the discussion. To approximate a continuous slip
distribution, the model subfaults are made reasonably

Table 1. Fault Parameters for Uniform Slip Models

Moment,

%x10° N m

Dip Slip,

Strike Slip,

Location?, km

Width®, Dip, Strike
oSW

Depth?,

Length?®,

Model

m

North m

East

km km

km

Loma Prieta Geodetic Data
75.8°4+4.0 N476°W £70 08+1.0 28+1.0

2.9
2.7

46+1.1
5.81%3

*-47

52+1.1
6 4+8.4

*Y-1.3

3 6+l.4

.8
“01%3%

N49.3°W 137

74.7°133

46+1.0
4.3157

9.941.0
9.3%53

30.3+5.0
32.6132

F test®
Bootstrap/

Synthetic Data

2.5

0.83°

0.83°
N47.5°W 406 05+0.2 2.3+02 0.87+0.03 0.8940.03

2.6

0.7

N47.6°W

75.8°
77.4°1+0.5

77.4°%53

18.0
178+ 0.3

12.6"
13.0+0.4
12.9757

0.0

4
39.8+1.2
39.5+19

Actual modeld

F test®

2.6

1 2+60

1 3+8.0

0.4
2'3:*—-0.4 *Y~0.5 *€~0.4 2.6

1.2
0.4%57%

N47.4°W 13§

Bootstrap’

17.34355

¢ Length along strike.

b Depth to the center of the fault.
¢ Width of the fault along dip.

4 Location of the center of the fault relative to the main shock hypocenter.
¢ Best model from all the data, 95% confidence level estimated from F' test.

f Mean of 2000 bootstrap models from resamples of the data, 95% confidence level estimated from percentile method interval.

9 Distributed-slip model shown in Figure 7.

'f Centroid depth for the distributed-slip model.
* Average slip for the distributed-slip model.
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Figure 6. Cross section along azimuth N41°E through
the main shock epicenter. The shaded region shows the
location of bootstrap models within the 95% confidence
limits of the fault parameters. The solid line is the mean
of the 2000 bootstrap models, and the dashed line is
the best fit model from all the data. The location of
the main shock and aftershocks with M > 3.0 recorded
from October 18 to October 31, 1989, are shown with
circles. The size of the circles reflect the magnitudes of
the earthquakes.

small. This causes the system of equations (6) to be un-
derdetermined, since the number of model parameters
(m = 330) is greater than the number of data (n = 326)
and the solution is therefore not unique. To regularize
the problem, we add constraints to equation (6) [e.g.,
Du et al., 1992] and seek an estimate of the slip s that
minimizes the function

l|d = d(s)||? + B%||V?s||* subjectto s >0, (7)

where the first term is the weighted residual sum of
squares (RSS) and the second term is a measure of the
“roughness” of the solution; V2s is a finite difference
‘ approximation to the Laplacian of s [Harris and Segall,
1987]. The slip is constrained to be positive, so that
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only solutions with right-lateral strike slip and reverse
dip slip are allowed. This is a reasonable constraint
since we do not expect the slip to reverse direction dur-
ing the earthquake. Without the nonnegativity con-
straint the solutions can be unstable, with areas of high
positive slip alternating with areas of negative slip. The
“smoothing” parameter $? controls the relative impor-
tance of minimizing the residual sum of squares versus
minimizing the roughness of the slip. We solve equa-
tion (7) by the nonnegative least squares algorithm of
Lawson and Hanson [1974].

The choice of the smoothing parameter 42 is a ba-
sic problem in inverse theory. Traditionally, 5% is se-
lected from a “trade-off” curve which plots the trade-
off between the fit to the data and some measure of the
model complexity. This approach is highly subjective
since the choice of % from a trade-off curve is some-
what arbitrary, and the final solution is sensitive to the
choice of the smoothing parameter [e.g., Matthews and
Segall, 1993]. A more rigorous method for estimating
smoothing parameters is cross validation [e.g., Wahba,
1990; Matthews and Segall, 1993]. Here, we use the
synthetic data set discussed previously to examine both
strategies. We use the results to guide us in choosing
the smoothing parameter for the actual Loma Prieta
geodetic data.

The philosophy behind cross validation is that one
can use n — 1 data to generate a model estimate and
use that model to predict the omitted datum. A “good”
model should predict the omitted data reasonably well.
The cross-validation residual is defined as the difference
between the omitted datum and the model prediction
for that datum. By repeating the calculation for each
datum and summing the squared cross-validation resid-
uals we find the cross-validation sum of squares (CVSS).
The optimal smoothing parameter is then selected as
the value of B2 that minimizes the CVSS. For non-
linear inversions (with nonnegative least squares) this
procedure is computationally intensive and has to be re-
peated for each value of 2. Without nonnegativity the
problem is linear, and an efficient method of comput-
ing the CVSS is available [e.g., Wahba, 1990; Matthews
and Segall, 1993]. We found that leaving out 10% of
the data rather than one datum at a time gave sim-
ilar results and decreased the amount of computation
significantly.

In the simulations we can compare the choice of
smoothing parameters determined by cross validation
and that chosen visually from a trade-off curve with
the optimal value of 2. The optimal value is defined
as the value that minimizes ||s—sgyn ||?, Where sqyp is the
slip distribution used to generate the data. The mini-
mum of ||s — seyn||? gives the best estimate one could
obtain with nonnegative least squares and the chosen
smoothing norm.

Simulations

The synthetic data, described in the previous section,
are inverted to obtain the predicted slip distribution
for a range of smoothing parameters. To examine the
resolution of the different data sets, we first treat the
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Figure 7. Distributed-slip model used to generate synthetic data. The horizontal coordinate
is the distance along strike of the fault from northwest to southeast in kilometers. The vertical
coordinate is distance along dip in kilometers. The gray scale bar shows the slip amplitude in
meters: (a) strike slip and dip slip (equal), (b) total slip. Right-lateral strike slip and reverse dip
slip are both positive. The rake is uniform along the fault at 135° since the magnitudes of the
strike-slip and dip-slip components are everywhere equal. The geodetic moment for this model

is My = 2.6 x 10** N m.

leveling data and the combined EDM, GPS, and VLBI
data sets separately, and then we combine all the data.

Figures 9a and 9b show the CVSS and [|s — sgyn]|?
as a function of the smoothing parameter, respectively.
Both curves exhibit broad minima at smoothing pa-
rameters from 5 to 10. Figure 9c shows the trade-
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off between the fit to the data (RSS) and the model
roughness. Based on the trade-off ‘curve, one might
choose a somewhat larger valué for the smoothing pa-
rameter, in the range #? = 10 — 25. Table 2 sum-
marizes the smoothing parameters that minimize the
CVSS (A%cvss), |Is — ssynl|? (ﬂzmqu), or qualitatively
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Figure 8. Location of estimated uniform slip fault geometry found from the synthetic data
§dashed line) relative to the location of the actual fault model with distributed slip (solid line):

a) map view, and (b) cross section AA'.
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Figure 9. Values of the smoothing parameter for the
synthetic data using all the data, minimizing: (a) cross
validation, (b) ||s—ssyn||?, and (c) trade-off between the
fit to the data (RSS) and the roughness of the model.

optimize the trade-off between fit to the data (RSS) and
roughness of the solution (82,.,4.). In summary, cross
validation gave an estimate that is essentially optimal,
while the trade-off curve yielded a slightly smoother so-
lution.

Figure 10 shows the slip distribution using §%2 = 5
for the the combined data. Comparing Figures 7 and
10, we see that the estimated slip resolves the bimodal
pattern of slip, although the maximum strike slip patch
in the northwest part of the fault is not as well resolved.

In the previous section we used the synthetic data
from this model and estimated the fault geometry as-
suming that the slip was uniform. To test for potential
bias in the slip estimates, we also use the geometry es-
timated by the nonlinear optimization, rather than the
correct geometry, and solve for the slip distribution. We
find that the slip distribution is not significantly differ-
ent from that obtained with the correct geometry. We
conclude that in the case of the Loma Prieta geodetic
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data, estimating the fault geometry assuming uniform
slip and then using that geometry to find the spatially
variable slip distribution gives reasonable results. There
will be some correlation between the geometry and slip,
but in this case they do not appear to be significant.

Distributed-Slip Results

We now present distributed-slip models for the Loma
Prieta rupture. We find the optimal smoothing parame-
ter using cross validation for the EDM, GPS, and VLBI
data alone, for the leveling data alone, and for the com-
bined data. Figure 11a shows the CVSS as a function of
the smoothing parameter for the combined data. The
minimum is at 2 = 1. For comparison, Figure 11b
shows the trade-off curve between the fit to the data
(RSS) and the roughness of the model. Smoothing pa-
rameters between 2.5 and 5 give models that fit the data
well without increasing the roughness of the model sig-
nificantly. The smoothing parameters that minimize
the CVSS for the different data are given in the first
column of Table 3. The value of 42 ranges from 0.5 to
1.0.

The predicted model using all the data and 32 = 1is
shown in Figure 12. The slip distribution is very hetero-
geneous. The pattern of strike slip has several isolated
maxima; the most prominent one is in the northwestern
part of the fault with up to 5 m of slip at 10 to 14 km
depth. There are two small slip patches in the south-
eastern part of the fault with up to 4 m of slip at 8 to
12 and 6 to 10 km depth. There is a very shallow slip
patch in the northwest, extending from the surface to
4 km depth with up to 4 m of slip, which is apparently
needed to fit data from stations LP2 and HS5203. These
stations are located near the zone of extensive ground
ruptures in the Summit Road-Skyland Ridge area (see
gray shaded area in Figure 15b [e.g., Ponti and Wells,
1991; U.S. Geological Survey Staff, 1989]. As a result,
data from these stations probably include some inelastic
deformation, and it is therefore likely that the shallow
slip patches in Figure 12 do not correspond to primary
fault slip. The pattern of dip slip shows a single sausage-
shaped maximum with up to 8 m of slip at 7 to 11 km
depth in the northwest part of the fault. The north-
west part of the fault has larger amounts of dip slip
than strike slip, whereas the southeast part of the fault
has mostly strike-slip motion. The geodetic moment
for this model is My = 3.4 x 10!° N m, which is about
17% greater than the moment of the best uniform slip

Table 2. 'Smoothing Parameter: Synth‘etic Data from

‘Distributed-Slip Model

Data 132CVSS ﬂzmodel ﬁztrade
EDM, GPS, and VLBI 5 5 10 - 25
Leveling 5 5 10 - 25
All data 5 10 10 - 25

B2 is the optimal smoothing parameter. The subscripts denote
the different minimization criteria used to obtain 82. CVSS is the
cross-validation sum of squares, model is the difference between
the estimated and the synthetic model, ||s — ssyn||?, and trade
is chosen from the trade-off curve between the residual sum of
squares and the model roughness.
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Figure 10. Predicted model from inversion of synthetic data using all the data and a smoothing
‘parameter of 32 = 5. The gray scale bar shows the slip amplitude in meters: (a) strike slip, (b)

- dip slip, and (c) total slip.

model. The moment is within the range estimated from

seismic studies (2.3-3.5 x10!® N m). A larger value of

‘the smoothing parameter (82 = 5), as suggested by the
trade-off curve, gives a smoother model with larger ar-
eas of slip and smaller slip amplitudes, but the total
moment is similar. The main features in the slip pat-
tern are the same, with maximum strike slip and dip
slip in the northeastern part of the fault and very lit-
tle dip slip south of the main shock. We conclude that
these features are robust.

Figure 13 shows the slip direction for the preferred
model. The size of each arrow is proportional to the
slip amplitude. There is a large variation in rake from
the southeast part of the fault, where the slip is al-
most purely right-lateral, to the central part of the
fault, where the slip is primarily dip slip, becoming
oblique northwest of the main shock. This pattern of
slip direction is quite similar to that observed by Beroza
[1991]). Averaging the rake over the fault plane gives
140°, whereas the rake of the best uniform slip model

was 139°. Both are in good agreement with the average
rake of 133°+ 8° estimated from teleseismic data [ Wal-
lace et al., 1991]. Possible mechanisms for the change
in rake are discussed below.

Figure 14 shows the observed horizontal displace-
ments with 95% error ellipses determined from the
EDM, GPS, and VLBI data and the station displace-
ments predicted by the preferred distributed-slip model.
Where there appears only to be one vector, the pre-
dicted and the observed displacements are indistin-
guishable. We see from Figure 14 that the model pro-
vides a good overall fit to the data. The largest dif-
ferences between the observed and predicted data are
6.6 cm at EDM station BIEL and 5.8 cm at EDM
station SARGENT. Figure 15a shows the vertical dis-
placements predicted by the preferred slip distribution
model, in cm. Figure 15b shows interpolated contours
of the weighted vertical residual. The triangles mark the
location of the two bench marks (GU2173 and HS5224)
that have the highest residual (about 9¢). In general,
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Figure 11. Values of the smoothing parameter for the
Loma, Prieta geodetic data combining all the data, min-
imizing (a) cross-validation sum of squares (CVSS) and

(b) trade-off between the residual sum of squares (RSS)
and the roughness of the model.

the fit to the data is fairly good, and the model cap-
tures 91% of the total signal. The areas around Loma
Prieta peak and the southern end of the Sargent fault
have large residuals in both horizontal and vertical com-
ponents of the displacement. This indicates that there
may be additional sources of deformation that are not
included in our model, such as motion on the Sargent
fault. Lisowski et al. [1994] cite evidence for 2 mm/yr
of shallow creep on the southern part of the Sargent
fault.

Model Resolution

We examine the model resolution by calculating the
surface displacements caused by 1 m of strike slip and
1 m of dip slip on a single fault element and then in-
verting the synthetic data setting 32 = 1. We use the
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same network of stations and data covariance as in the,
calculations for the Loma Prieta data. Owing to space
limitations we show only the resolution for the total slip
here. Figure 16 shows the location of the nine elements
that we used in the model resolution calculation (white
boxes) and the predicted total slip (gray scale). The
resolution was calculated for each element separately,
and then the results for three elements were combined
in one figure. The maximum slip amplitude is much
smaller than the correct slip amplitude; however, the
total moment is comparable to the correct moment. In
general, we observe that the resolution decreases with
increasing depth on the fault. Slip on the northernmost
part of the fault is not as well resolved as slip on the
central and southern part of the fault. The inferred slip
pattern is elongated vertically at shallow depth, almost
circular at mid-depth and horizontally elongated at the
bottom of the fault. The location of maximum slip is
biased toward the surface for the shallow elements (at
2 to 4 km depth), but correlates well with the location
of the element that actually slipped at greater depths.
This bias at shallow depth is, in part, due to the lack
of stations close to the fault trace.

Discussion

We calculated the change in traction acting on the
Loma Prieta rupture plane induced by our inferred slip
distribution. The maximum local stress drop, which
occurs in the area of maximum slip northwest of the
hypocenter, is 50 MPa. There are stress increases of up
to 10 MPa in the regions surrounding the slip patches.
According to our calculations there are regions within
the rupture zone in which the stress (particularly the
strike-slip component of traction) increased after the
earthquake. Given that our ability to resolve slip is
limited (Figure 16) and the stress change is proportional
to the spatial derivative of slip, we must view the stress
change calculations with some caution. For example, it
is possible that local stress drops exceed 50 MPa but
that we lack the resolution to detect features on that
scale.

Figure 17 shows the estimated total slip amplitude
relative to the locations of aftershocks with magnitude
greater than 1.0 recorded during the last 2 weeks of Oc-
tober 1989. There is some correlation between areas of
high slip and an absence of aftershocks; however, one
must consider this comparison in light of our ability to
resolve spatial variations in slip. The correlation we
observe in Figure 17 is perhaps not as strong as that
found by Beroza [1991]. It is likely that the correlation

Table 3. Cross Validation: Loma Prieta Geodetic Data

Data BZ CVSS M,, x10® Nm RSS Roughness, x10~° km™—~
EDM, GPS, and VLBI 0.5 3189 3.6 309 3.9
Leveling 0.5 1658 8.3 808 16.9
All data 1.0 4979 3.4 2041 4.1

2 is the optimal smoothing parameter found from cross validation, CVSS is the minimum value of
cross-validation sum of squares for the optimal smoothing parameter, RSS is residual sum of squares
for that value of the smoothing parameter, My is the geodetic moment, and roughness is the model
roughness calculated from the finite difference approximation of the Laplacian.
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Figure 12. Predicted slip distribution model using all the Loma Prieta geodetic data and a
smoothing parameter of 32 = 1. The gray scale bar shows the slip amplitude in meters: (a)

strike slip, (b) dip slip, and (c¢) total slip.

between aftershocks and high slip areas could be im-
proved without violating the geodetic observations sig-
nificantly. The main difference between the preferred
model obtained from the geodetic data (Figure 12) and
the models of Beroza [1991] and Steidl et al. [1991]
is that the geodetic result has maximum dip slip and
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maximum strike slip in the northwest part of the fault,
whereas their models have maximum strike slip in the
southeast and maximum dip slip in the northwest. The
geodetic result thus agrees better with the model of
Wald et al. [1991] in terms of the location of the max-
imum slip amplitude on the fault. However, our model
has no dip slip in the southeast part of the fault, causing
the slip direction to vary greatly along strike.

The preferred model, based on a smoothing parame-
ter chosen by cross validation, is significantly more vari-
able in amplitude than comparable models derived from
seismic data. Estimated slip amplitude varies from zero

Figure 13. Predicted slip direction for the preferred
model using all the Loma Prieta geodetic data and 2 =
1. The slip changes direction along the strike of the
fault, rotating from almost pure right-lateral strike slip
in the southeastern part of the fault, to mostly dip slip
and oblique slip in the northwest part. The open areas
have no slip.



ARNADOTTIR AND SEGALL: GEODETIC DATA INVERSION FOR FAULT MODELS

21,851

llllllllIIIIll|lllllll|l|lIlllllil’llllllllllllllIllllllll!llllllll!lJ_LlllL_

] o

30" Observed r
] / Predicted [

20 - -
] -

10" -
37 °— —
50' -
w0 -
. 20 Km g -

1 Lol N ~ ‘\‘\.__ RN C

T A\ NN N -
llll|llll'lnvt]lllI]nn|||11qullllrpinplnllrlllnlllllrlllllllllvl

20' 10' 122 ° 50' 40' 30' 20'

Figure 14. Observed horizontal displacements (vectors with 95% error ellipses) and predicted
displacements from the preferred distributed-slip model (Figure 12). The surface projection of

the fault model is indicated by a rectangle.

up to 5 m of strike slip and 8 m of dip slip. In contrast,
in most of the slip models derived from seismic data the
peak slip amplitude is less than 4 m, although Beroza
[1991] finds up to 5.9 m of slip locally. As noted pre-
viously, the variability in the estimated slip depends
critically on the choice of smoothing parameter. Our
results suggest that previous slip estimates are, to some
“degree, over damped. Based on our simulations, we be-
lieve that the cross-validation estimates of smoothing
parameter are reasonable. However, if there are corre-
lations in the data that are not accounted for in our
variance-covariance matrices, then cross validation will
tend to choose a smoothing parameter that is biased
toward nonsmooth distributions. This is because cross
validation is based on the premise that signal is spatially
correlated while error is not. An example of a correla-
tion that has not been accounted for in our analysis
is bench mark instability, which causes opposite signed
tilts in the two level sections from that bench mark. We
do find similar smoothing parameters from the various
independent data sets, which does suggest that cross

validation is not being biased by data correlations. If
this is so, it implies that the slip distribution in the
earthquake is more variable than previously assumed.

Rake Variation

We observe significant variation in rake in the pre-
ferred distributed-slip model. In the method used here,
the smoothness condition in equation (7) is applied to
the strike-slip and dip-slip components separately. Thus
we have not directly penalized variations in rake. There
are, however, two factors which cause us to believe that
the rake variation is likely to be real. First, our simula-
tions (Figure 7) which start with uniform rake produce
estimates with nearly uniform rake. Thus there is noth-
ing in the data distribution or the method that biases
the result toward variable rake. Second, at least some.
inversions of the strong motion data exhibit a similar
rake variation. It seems unlikely that the different data
sets and methodologies used would all be biased in the
same sense.
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Figure 15. (a) Predicted vertical displacements from the best distributed-slip model, in cen-
timeters. (b) Weighted residual of the vertical displacements and the best distributed-slip model
for the combined data. The weighted residual has units of o. The location of the bench marks
are shown with dots. The solid triangles show the location of the two stations that have the
largest residuals about 9. The shaded region indicates the area of extensive ground cracking
and land sliding observed after the 1989 Loma Prieta earthquake [from U.S. Geological Survey

Staff, 1989].

A common assumption in fault mechanics is that slip
occurs in the direction of the maximum resolved shear
stress on the fault. If the direction of maximum shear
stress changes as a function of position, the rake should
change accordingly. It is also commonly assumed that
stress is homogeneous within some volume. The fact
that we find a nonuniform rake along the Loma Prieta
rupture zone appears to require some heterogeneity in
stress. While the stress may, in fact, be quite heteroge-

_neous, we show here that the observed change in rake
can be explained by a small change in fault dip.

For the sake of discussion, we divide the fault into
two parts where the direction of slip changes. The av-

erage rake for the northwest part of the fault (from 0

km to 28 km along the strike of the fault model) is
135°. The rake is 165° for the southeastern part of the
fault (from 28 km to 40 km along strike). Given that
the San Andreas fault is a dominantly strike-slip envi-
ronment, we assume that the maximum and minimum
principal stresses are horizontal and the intermediate
stress is vertical. Following Segall and Lisowski [1990],

we calculate the horizontal and vertical shear stresses
74 and 7, from

h = (03 — 01) cos fsin fsin 6 , (8)

and

7o = [(02 — 03) — (01 — 03) sin? @] cosésiné,  (9)

respectively, where § is the fault dip, 01 > 02 > 03 are
the principal stresses and 6 is the angle from the normal
to the fault to the direction of o3, measured clockwise.
We define o as the ratio of strike slip and dip slip on
the fault,

(10)

In the preferred model, a; = 1.0 for the northwestern
part of the fault, and a; = 3.7 for the southeastern
part. Combining equations (8), (9), and (10) gives

) (11)

where ® = (03 — 03)/(01 — 03). The ratio of stress
magnitudes, P is zero if 03 = o3 and one if 02 = 0;.
Assume, for the moment, that the observed change in
rake is due to rotation of the stress about a vertical axis.
We can then solve equation (11) for the required rota-
tion, for a given value of ®. We find that the stress ori-
entation must rotate by at least 14° counterclockwise,
assuming ® is a constant. Gephart [1994] finds consid-
erable variation in the postseismic principal stress field
orientation from inversion of aftershocks in six subre-
gions of the 1989 Loma Prieta earthquake, indicating
that the stress field is heterogeneous on a scale of about
10 km. The variation in the shear stress direction he
observes is of the same sense but of much smaller mag-
nitude than the minimum rotation needed to explain
the main shock rake change.

Th = QTy .

cosfsin @

® =sin%d —
acosd
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Figure 16. Model resolution for nine elements on the fault. The model resolution is calculated
by imposing 1 m of strike slip and 1 m of dip slip on one element and inverting the computed
surface deformation using a smoothing parameter of 32 = 1. The gray scale shows the total slip
in meters from the inversion. The white boxes show the location of the elements used in the

model resolution calculation. The predicted slip

distribution is calculated for each element and

the results for three elements are combined in Figures 16a, 16b, and 16c.

It is also possible that the change in slip direction is
due to a change in dip of the fault. Equation (11) can
be rearranged to read

cos@sinf
——— 12
sin?0 — ® (12)

If we assume a uniform stress tensor, then 6 and ® are
constants, so the right-hand side of equation (12) is con-
stant. Thus o cosd; = ag cos 6 = const. If we take the
dip of the northwestern part of the fault to be §; = 76°,

acosd =

Distance along strike (km)

we can solve for the dip on the southeastern part of
the fault, 6 ~ 86°. This indicates that a 10° change
in dip can explain the change in rake. The change in
slip direction in our fault model occurs roughly in the
same location as an apparent change in dip of the af-
tershock zone [e.g., Dietz and Ellsworth, 1990; Steven
Roecker, personal communication , 1994]. We think
that the change in fault dip is a likely explanation for
the change in slip direction. However, it is also possi-
ble that there is some rotation of the principal stress
directions.

Conclusions

The location and geometry of the Loma Prieta rup-
ture inferred from the inversion of geodetic observations

Figure 17. Predicted slip amplitude for the preferred
model using all the Loma Prieta geodetic data and % =
1. The circles show locations of aftershocks recorded
in October 1989. There is little correlation between
absence of aftershocks and the area of maximum slip
for our model.
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are generally consistent with the locations of the after-
shocks as well as the main shock focal mechanism. The
best fitting rupture surface is located near the south-
western edge of the aftershock zone in the hanging wall
of the fault. The fact that the best fitting rupture sur-
face is not within the center of the aftershock zone may
be real, due to contrast in elastic properties across the
fault, or may be simply due to errors in the data. The
set of allowable dislocation models, as determined by
bootstrap resampling, overlaps most of the aftershock
zone. These results together with numerical simulations
demonstrate that high-quality geodetic data combined
with quasi-Newton estimation procedures can uniquely
determine fault position and geometry. This is impor-
tant in applying geodetic measurements to the study
of interseismic and postseismic deformation where con-
straints from seismic data are often minimal.

The geodetic data can also be inverted to determine
the distribution of slip on the estimated fault surface.
Simulations indicate that cross validation is nearly op-
timal in choosing smoothing parameters for these slip
inversions. Using cross validation, we find that the slip
distribution on the Loma Prieta rupture surface is very
heterogeneous. Slip is concentrated updip and north-
west of the hypocenter, where the maximum strike slip
is 5 m and the maximum dip slip is 8 m. Our results
suggest that other models of fault slip have been over
smoothed. The alternative is that there are residual
correlations in the data that are not accounted for in
our estimates of data covariance and that this biases
cross validation toward nonsmooth models.

The estimated slip direction varies considerably over
the fault plane. Dominantly right-lateral strike slip oc-
curred southeast of the hypocenter, while the slip north-
west of the hypocenter is oblique right-reverse. While
this variation in rake could be indicative of spatial vari-
ations in stress orientation, it could also be explained
by change in fault dip with respect to a uniform re-
gional stress. A change in fault dip of the appropriate
sign and magnitude is, in fact, observed in the zone of
aftershocks. The fact that the slip direction changes
markedly at or near the point where the fault changes
dip suggests that changes in the fault geometry played
an important role in the rupture dynamics.

Acknowledgments. We are grateful to Mike Lisowski,
Grant Marshall, and Ross Stein for access to much of the
data used in this study. We thank Ralph Archuleta, Greg
Beroza, Dawn Burgess, Yijun Du, Donna Eberhart-Phillips,
Bill Ellsworth, Jeff Freymueller, Iain Johnstone, Michael
Martin, Jamie Steidl, Larus Thorlacius, Chesley Williams,
and David Wald for discussions and comments. Suggestions
from Robert King, Jeanne Sauber and an anonymous re-
viewer helped clarify figures and text. This research was
supported by NSF grants EAR-9011226 and EAR-9116117
and the U.S. Geological Survey.

References

Arnadéttir, T., Earthquake dislocation models derived from
inversion of geodetic data, Ph.D. thesis, Stanford Univ.,
Stanford, Calif., 1993.

ARNADOTTIR AND SEGALL: GEODETIC DATA INVERSION FOR FAULT MODELS

Arnadéttir, T., P. Segall, and M. Matthews, Resolving the
discrepancy between geodetic and seismic fault models
for the 1989 Loma Prieta, California, earthquake, Bull.
Seismol. Soc. Am., 82, 2248-2255, 1992.

Beroza, G. C., Near-source modeling of the Loma Prieta
earthquake: Evidence for heterogeneous slip and implica-
tions for earthquake hazard, Bull. Seismol. Soc. Am.,
81, 1603-1621, 1991.

Clark, T. A., C. Ma, J. M. Sauber, J. W. Ryan, D. Gor-
don, D. B. Shaffer, D.S. Caprette, and N.R. Vandenberg,
Geodetic measurement of deformation in the Loma Prieta,
California earthquake with very long baseline interferom-
etry, Geophys. Res. Lett., 17, 1215-1218, 1990.

Dietz, L. D., and W. L. Ellsworth, The October 17, 1989,
Loma Prieta, California, earthquake and its aftershocks:
Geometry of the sequence from high-resolution locations,
Geophys. Res. Lett., 17, 1417-1420, 1990.

‘Draper, N. R., and H. Smith, Applied Regression Analysis,

2nd ed., 709 pp., John Wiley, New York, 1981.

Du, Y., A. Aydin, and P. Segall, Comparison of various
inversion techniques as applied to the determination of a
geophysical deformation model for the 1983 Borah Peak
earthquake, Bull. Seismol. Soc. Am., 82, 1840-1866,
1992.

Du, Y., P. Segall, and H. Gao, Dislocations in inhomoge-
neous media via a modulii perturbation approach: Gen-
eral formulation and two-dimensional solutions, J. Geo-
phys. Res., 99, 13,767-13,772, 1994.

Eberhart-Phillips, D., and W. D. Stuart, Material hetero-
geneity simplifies the picture: Loma Prieta, Bull. Seis-
mol. Soc. Am., 82, 1964-1968, 1992.

Efron, B., and R. Tibshirani, Bootstrap methods for stan-
dard errors, confidence intervals, and other measures of
statistical accuracy, Stat. Sci., 1, 54-77, 1986.

Gephart, J. W., Spatial variations in stress from the first
six weeks of aftershocks of the Loma Prieta earthquake,
in The Loma Prieta, California Earthquake of October
17, 1989, Chapter D, Postseismic Effects, Aftershocks and
Other Phenomena, edited by P. Reasenberg, U.S. Geol.
Surv. Prof. Pap. 1550, in press, 1994.

Gill, P. E. , W. Murray, M. A. Saunders, and M. H. Wright,
Practical Optimization, 401 pp., Academic, San Diego,
Calif., 1981.

Gill, P. E., W. Murray, M. A. Saunders, and M. H. Wright,
Users guide for NPSOL: A FORTRAN package for non-
linear programming, Tech. Rep. SOL 86-2, Syst. Optim.
Lab., Dep. of Operations Res., Stanford Univ., Stanford,
Calif., 1986.

Hall, P., and M. Martin, On bootstrap resampling and iter-
ation, Biometrika, 75, 661-671, 1988.

Hanks, T. C., and H. Krawinkler, The 1989 Loma Prieta,
California, earthquake and its effects: Introduction to the
special issue, Bull. Seismol. Soc. Am., 81, 1415-1423,
1991.

Harris, R. A., and P. Segall, Detection of a locked zone at
depth on the Parkfield, California, segment of the San
Andreas fault, J. Geophys. Res., 92, 7945-7962, 1987.

Hartzell, S. H., G. S. Stewart, and C. Mendoza, Comparison
of Ly and L norms in a teleseismic waveform inversion for
the slip history of the Loma Prieta, California earthquake,
Bull. Seismol. Soc. Am., 81, 1518-1539, 1991.

Horton, S., J. G. Anderson, and A. Mendez, Frequency do-
main inversion for the character of rupture during the
1989 Loma Prieta, California earthquake using strong mo-
tion and geodetic observations, in The Loma Prieta, Cal-
ifornia Earthquake of October 17, 1989, Chapter A, Main
shock Characteristics, edited by P. Spudich, U.S. Geol.
Surv. Prof. Pap. 1550, in press, 1994.

Lawson, C. L., and R. J. Hanson. Solving Least Squares
Problems, Prentice-Hall, Englewood Cliffs, N. J., 1974.



ARNADOTTIR AND SEGALL: GEODETIC DATA INVERSION FOR FAULT MODELS

Lisowski, M., W. H. Prescott, J. C. Savage, and M. J.
Johnston, Geodetic estimate of coseismic slip during the
1989 Loma Prieta, California, earthquake, Geophys. Res.
Lett., 17, 1437-1440, 1990.

Lisowski, M., M. H. Murray, and J. L. Svarc, Geodetic
measurements of coseismic horizontal deformation, in The
Loma Prieta, California Earthquake of October 17, 1989,
Chapter A, Main shock Characteristics, edited by P. Spu-
dich, U.S. Geol. Surv. Prof. Pap. 1550, in press, 1994.

Marshall, G. A., and R. S. Stein, Elevation changes associ-.

ated with the October 17, 1989, Loma Prieta earthquake
and their use to infer fault slip geometry, in The Loma
Prieta, California Earthquake of October 17, 1989, Chap-
ter A, Main shock Characteristics, edited by P. Spudich,
U.S. Geol. Surv. Prof. Pap. 1550, in press, 1994.

Marshall, G. A., R. S. Stein, and W. Thatcher, Faulting
geometry and slip from co-seismic elevation changes: The
18 October 1989, Loma Prieta, California, earthquake,
Bull. Seismol. Soc. Am., 81, 1660-1693, 1991.

Matthews, M. V., and P. Segall, Statistical inversion of
crustal deformation data and estimation of the depth dis-
tribution of slip in the 1906 earthquake, J. Geophys. Res.,
98, 12,153-12,163, 1993.

McNally, K., and S. N. Ward, The Loma Prieta earthquake
of October 17, 1989: Introduction to the special issue,
Geophys. Res. Lett., 17, 1177, 1990.

Okada, Y., Surface deformation due to shear and tensile
faults in a half-space, Bull. Seismol. Soc. Am., 75, 1135—
1154, 1985.

Ponti, D. J., and R. E. Wells, Off-fault ground ruptures in
the Santa Cruz Mountains, California: Ridge-top spread-
ing versus tectonic extension during the 1989 Loma Pri-
eta earthquake, Bull. Seismol. Soc. Am., 81, 1480-1510,
1991.

Savage, J.C., M. Lisowski, and J.L. Svarc, Postseismic de-

formation following the 1989 (M=7.1) Loma Prieta, Cali-

fornia, Earthquake, J. Geophys. Res., 99, 13,757-13,765,

1994.

Segall, P., and M. Lisowski, Surface displacements in the
1906 San Francisco and 1989 Loma Prieta earthquakes,
Science, 250, 1241-1244, 1990.

21,855

Snay, R. A., H. C. Neugebauer, and W. H. Prescott, Hori-
zontal deformation associated with the Loma Prieta earth-
quake, Bull. Seismol. Soc. Am., 81, 1647-1659, 1991.

Steidl, J. H., R. J. Archuleta, and S. H. Hartzell, Rupture
history of the 1989 Loma Prieta, California, earthquake,
Bull. Seismol. Soc. Am., 81, 1573-1602, 1991.

Steidl, J. H., and R. J. Archuleta, The 1989 Loma Prieta,
California, earthquake: Are geodetic measurements and
rupture models consistent?, in The Loma Prieta, Califor-
nia Earthquake of October 17, 1989, Chapter A, Main
shock Characteristics, edited by P. Spudich, U.S. Geol.
Surv. Prof. Pap. 1550, in press, 1994.

U.S. Geological Survey Staff, Preliminary map of fractures
formed in the Summit Road-Skyland Ridge area during
the Loma Prieta, California, earthquake of October 17,
1989, scale 1:12000, U.S. Geol. Surv., Open File Rep.,
89-668, 1989.

Wahba, G., Spline Models for Observational Data, Soci-
ety for Industrial and Applied Mathematics, Philadelphia,
Pa., 1990.

Wald, D. J., D. V. Helmberger, and T. H. Heaton, Rupture
model of the 1989 Loma Prieta earthquake from the in-
version of strong motion and broadband teleseismic data,
Bull. Seismol. Soc. Am., 81, 1540-1572, 1991.

Wallace, T. C., A. Velasco, J. Zhang, and T. Lay, A broad-
band seismological investigation of the 1989 Loma Prieta,
California, earthquake: Evidence for deep slow slip?, Bull.
Seismol. Soc. Am., 81, 1622-1646, 1991.

Williams, C., T. Arnadéttir, and P. Segall, Coseismic defor-
mation and dislocation models of the 1989 Loma Prieta
earthquake derived from Global Positioning System mea-
surements J. Geophys. Res., 98, 4567-4578, 1993.

T. Arnadéttir, Department of Geology, Victoria University,
P.O. Box 600, Wellington, New Zealand. (e-mail: thora@gphs
.Vuw.ac.nz)

P. Segall, Department of Geophysics, Stanford University,
Stanford, CA 94305. (e-mail: segall@kilauea.stanford.edu)

(Received November 16, 1993; revised May 11, 1994;
accepted May 13, 1994.)



