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Correction to “Dislocations in inhomogeneous media
via a moduli perturbation approach: General
formulation and two-dimensional solutions” by Yijun

Du, Paul Segall, and Huajian Gao

P. Cervelli, S. Kenner, and P. Segall

Department of Geophysics, Stanford University, Stanford, California

In the paper “Dislocations in inhomogeneous media
via a modull perturbation approach: General formula-
tion and two- dimensional solutions” by Yijun Du, Paul
Segall, and Huajlan Gao (Journal of Geophysical Re-
search, 99(B7), 13,767-13779, 1994), there are several
substantive and typographical errors. Using a Fourier
integral method, Savage [1998] recently found exact so-
lutions for the surface displacement field from a finite
edge dislocation (a model for a dip-slip fault) in a lay-
ered half-space. While some of his results show reason-
able agreement with the perturbation solutions given in
Du et al., several results disagree significantly. The dis-
agreements are well beyond what could be ascribed to
the approximate nature of the perturbation solutions.

The expressions given in the original Appendix B for
the plane-strain displacement Green’s functions from
a line force in a two-dimensional, homogeneous half-
space contain several sign errors, probably the result
of an incorrect coordinate system shift, which are the
source of the discrepancy between Du et al. and Sav-
age [1998]. Additionally, one of the Green’s functions
(the vertical displacements from a vertically oriented
line force) contains an error that can be traced back to
Maruyama [1966] in this incorrect form. However, be-
cause the perturbation approach requires evaluation of
the Green’s functions only at the free surface, this error
did not affect the analysis of Du et al.; the incorrect
terms vanished at the free surface.

The expressions given in the original Appendix C for
the stresses from an infinite, inclined edge dislocation
in a homogeneous half-space also contain typographical
errors, but these did not occur in the computer pro-
grams written to compute the perturbation solutions.
Finally, the expressions given in the original Appendix
D for the surface displacements from an infinite inclined
edge dislocation in a homogenous half-space contain a
sign error, but, again, this error did not occur in the
computer programs.

To find accurate expressions for the two-dimensional
plane-strain Green’s functions, we began with the stress
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functions for a line force given by Melan [1932]. We
checked these expressions extensively, ensuring that they
satisfied the equilibrium and compatibility equations
and that the tractions vanished at the free surface.
Strains were calculated from the stresses, and these were
then integrated to find displacements. Finally, we dif-
ferentiated the displacement functions to confirm the
integration.

To verify the accuracy of the stress functions for an
edge dislocation we checked that they satisfied the equi-
librium and compatibility equations and that the verti-
cal stresses vanished at the free surface. We also com-
pared them to the three-dimensional stresses for a dis-
location given by Okada [1992], which they asymptot-
ically approached as the three-dimensional dislocation
grew very long.

Given in the appendices of this paper are corrected
expressions for (1) displacements from a line force in a
two- dimensional, homogeneous elastic half-space {these
replace expressions (B4)-(B7) of Du et al.); (2) the
stresses from an infinite edge dislocation in a two-
dimensional, homogeneous elastic half-space (these re-
place expressions (C1)-(C3) of Du et al.); (3) the dis-
placements from an infinite edge dislocation in a two-
dimensional, homogeneous elastic half-space (these re-
place expressions (D1) and (D2) in Du et al.); and (4)
stresses from a line force in a two- dimensional, homoge-
nous elastic half-space (these were not given originally,
but we include them here for completeness); Note that
we have adopted a different coordinate system from that
of Du et al., which is consistent with the coordinate sys-
tem used by Okada [1992].

Using the corrected Green’s functions, we compared
the first order perturbation solutions to the case de-
scribed in Figure 5a of Savage [1998]. Figure la com-
pares the perturbation solutions derived from the in-
correct Green’s functions given by Du et al. to both
Savage’s [1998] solution and a solution derived from a
finite-element analysis (these plots correspond to the
original Figure 8, but are plotted using Savage’s con-
ventions). Note the severe disagreement for the hori-
zontal displacement. The perturbation solution for the
vertical displacement is also in error (it overcorrects),
but at least the sign is correct. Figure 1b depicts the
perturbation solutions using the correct Green’s func-
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Figure 1. The first-order approximation calculated using (a) incorrect Green’s functions and (b)
correct Green’s functions. Both are compared to a finite element solution and to Savage’s [1998]
Fourier intergral solution. The displacements are from a vertical fault in a layered, semi-infinite
medium. The top layer is 3 km thick. The fault is 9 km deep, is 10 km long, is centered at the
origin, and has 2 m slip. The z; axis is horizontal; the z» axis is vertical.

tions. The first order solutions for both displacement
components now agree reasonably with the other solu-
tions. Moreover, the first-order solution for the vertical
component is now better behaved-it approaches rather
than exceeds the analytic solution.

We have recreated the original Figures 8 and 9 using
the correct Green’s functions. While the new version
(Figures 2 and 3) differ significantly from the originals,
particularly for the horizontal displacements, the main
geodetic conclusion remains the same: failure to ac-
count for material heterogeneity can at least partially
explain the consistently shallow bias of geodetic inver-
sion. Moreover, the good agreement among the pertur-
bation solutions, the analytic solutions, and the finite
element solutions validates the perturbation approach

as a viable and efficient method for incorporating ma-
terial heterogeneity into deformation models.

Appendix A: Definitions and Coordinate
System

All the expressions given in these appendices assume
the following definitions:

by = ssind (AL
by = scosé (A2)
rP=(o-a)’+8 (A3)
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Figure 2. A reproduction of the original Figure 8 using the corrected Green’s functions. The
displacements are from a vertical fault in a layered, semi-infinite medium. The top, more com-
pliant, layer is 5 km thick. The fault is 9 km deep, is 10 km long, is centered at the origin, and

has 2 m slip.
P=(z1 - &)’ + (@2~ &)° (A4)
3= (21— &) + (22 + &)° (A5)
g = tan~1| T~ 51}
e [ & (46)
=1 1T1 &1
6, = tan {““”xz = &] (A7)

where s is the slip vector and ¢ is the dip of the dis-
location. The elastic moduli used in the following ex-

pressions are Poisson’s ratio v and the shear modulus

.
Figure Al depicts the coordinate system adopted

here. Note that z; is the horizontal axis and that z5 is
the vertical axis, which is oriented positive up.

Appendix B: Displacements at (z,z5)
From a Line Force Acting at (£,&) in a
Two-Dimensional Homogeneous Elastic
Half-Space

For a line force in the z; direction,
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Figure 3. A reproduction of the original Figure 9 using the corrected Green’s functions. The
displacements are from a horizontal fault in a vertically layered, semi-infinite medium. The
boundary between the layers is at —5.5 km; the more compliant medium is to the right. The
fault is 9 km deep, is & km long, is centered at the origin, and has 2 m slip.
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Figure Al. The coordinate system and dislocation ge-
ometry adopted here. Note that the vertical axis is neg-
ative down. The locations of both line forces and edge
dislocations are denoted by (&1, &), while the observa-
tion point is denoted by (z1,%2). The arrows indicate
sense of motion for positive slip.

For a line force in the o direction,

G12 o %H—(i—_—;[— (1——2V)(1——Z/)92
. (z2 — §24)9%$1 - &)
+ (3 o 42/) (332 - §1}T<%xl - §l)

+§2$2 (o + &) (21 — §1):f

Z
T3

Gz

_ 1 [ _&@-&)
T 27 r2

z2=0
+@v-1) 91 (B6)

In T

G22

1 { 34y
rp(l—v)| 4
(21— &)°

82 -~ 120 +5
B S L i

+2§2$2 - (3—4v) (21 — &)°
4r2
bz (71 — 51)2} (B7)

5

_ 1 [ @m-&?
27y 2

G2

z2==0

+ (- 1)1:17»2} (BS)

Appendix C: Stresses at (z;,22) From an
Infinite Edge Dislocation at (£,£) in a
Two-Dimensional Homogeneous Elastic
Half-Space
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To calculate the stresses from a finite edge disloca-
tion, sum the stresses from two appriopriately juxta-
posed infinite edge dislocations.

(C3)

Appendix D: Surface Displacements at
(z1,0) From an Infinite Edge Dislocation
at (£1,&;) in a Two-Dimensional
Homogeneous Elastic Half-Space
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To calculate the surface displacements from a finite
edge dislocation, sum the displacements from two ap-
propriately juxtaposed infinite edge dislocations.

Appendix E: Stresses at (z;,z2) From a
Line Force Acting at (£,&) in a
Two-Dimensional Homogeneous Elastic
Half-Space

For a line force in the z; direction,
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For a line force in the z» direction,
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