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Abstract.

The January 1997 East Rift Zone eruption on Kilauea volcano, Hawaii, occurred within a network of

continuous Global Positioning System (GPS) receivers. The GPS measurements reveal the temporal history

of deformation during dike intrusion, begining ∼ 8 hours prior to the onset of the eruption. The dike volume

as a function of time, estimated from the GPS data using elastic Green’s functions for a homogeneous

half-space, shows that only two thirds of the final dike volume accumulated prior to the eruption and the

rate of volume change decreased with time. These observations are inconsistent with simple models of

dike propagation, which predict accelerating dike volume up to the time of the eruption and little or no

change thereafter. Deflationary tilt changes at Kilauea summit mirror the inferred dike volume history,

suggesting that the rate of dike propagation is limited by flow of magma into the dike. A simple, lumped

parameter model of a coupled dike magma-chamber system shows that the tendency for a dike to end in

an eruption (rather than intrusion) is favored by high initial dike pressures, compressional stress states,

large, compressible magma reservoirs, and highly conductive conduits linking the dike and source reservoirs.

Comparison of model predictions to the observed dike volume history, the ratio of erupted to intruded

magma, and the deflationary history of the summit magma chamber suggest that most of the magma

supplied to the growing dike came from sources near to the eruption through highly conductive conduits.

Interpretation is complicated by the presence of multiple source reservoirs, magma vesiculation and cooling,

as well as spatial variations in dike-normal stress. Reinflation of the summit magma chamber following

the eruption was measured by GPS and accompanied a rise in the level of the Pu’u O’o lava lake. For

a spheroidal chamber, these data imply a summit magma chamber volume of ∼ 20 km3, consistent with

recent estimates from seismic tomography. Continuous deformation measurements can be used to image

the spatio-temporal evolution of propagating dikes, and reveal quantitative information about the volcanic

plumbing systems.
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Introduction

Continuous Global Positioning System (GPS) measurements preceding the January 30, 1997 eruption on

Kilauea volcano, Hawaii constrain the temporal evolution of deformation associated with dike propagation

in unprecedented detail [Owen et al., 2000a]. Figure 12 shows the horizontal displacements spanning the

intrusion/eruption as determined from a combination of campaign and permanent GPS data. Rift extension

due to dike emplacement, and contraction due to deflation of a shallow magma chamber beneath the

summit of Kilauea are clearly visible in the data. Detailed analysis of the displacements indicates that, in

addition to the aforementioned sources, a center of deflation was located within the East Rift Zone (ERZ)

near Makaopuhi crater. The dike inferred from non-linear inversion of the surface displacements is 2.0

meters thick, aligned with the surface fissures, and dips steeply to the south [Owen et al., 2000a].

The eruption began at roughly 13:00 UTC on January 30, 1997 at Napau Crater on Kilauea’s East Rift

Zone (Figure 12). Harmonic tremor began 8 hours prior to the eruption at 4:45 UTC, and at 5:30 UTC

Kilauea’s summit began to subside, indicative of melt leaving the shallow summit magma chamber. Prior

to the Napau eruption magma had been erupting from the long-lived Pu’u O’o vent only a few kilometers

downrift. Sometime during the early stages of the January 30’th Napau eruption, which lasted only 22

hours, magma drained from the lava pond at Pu’u O’o, leading to a two month long pause in the eruption

there.

Owen et al. [2000a] showed that extension between the GPS stations NUPM and KTPM (Figure 12),

began nearly coincidentally with the onset of tremor, approximately 8 hours before the eruption. NUPM,

located north of the ERZ, displaced to the north, while KTPM, located south of the ERZ, displaced to

the south, consistent with dike intrusion into the rift. The extension began rapidly and then slowed with

time, even before the onset of the eruption [Owen et al., 2000a]. We show here that the displacement time

history places strong constraints on the growth of the dike prior to and during the eruption. In particular,

we show that the decreasing extension rate with time is not easily explained with simple models of dike

propagation at constant inlet pressure. Melt is fed to the growing dike from a number of sources, all at

some distance from the dike [Owen et al., 2000a]. We consider the mechanical behavior of the coupled
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dike-chamber system, and show that such models predict deformation histories in reasonable accord with

the observations.

Many previous theoretical studies of dike propagation have considered a constant source pressure [Rubin,

1993] or flux [Lister and Kerr, 1991] at the dike inlet [see review by Rubin, 1995]. These boundary

conditions may be chosen more for tractability than for physical reasons. Mériaux and Jaupart [1998]

consider a dike propagating through a plate overlying a large magma reservoir. Most recently Ida [1999]

presented a model for dike growth including the effects of a finite sized magma chamber. Only in the case of

extremely large and compressible magma reservoirs will the melt pressure at the dike inlet actually remain

constant as the dike propagates. Other workers have considered the depressurization of a magma chamber

in response to withdrawal of magma. Dvorak and Okamura [1987] showed that summit tilt changes at

Kilauea followed a roughly exponential decay during subsidence events. They invoke a simple hydraulic

model attributed to Machado et al. [1974], involving a compressible chamber connected to a magma sink by

a cylindrical conduit. A central difference between Dvorak and Okamura’s [1987] analysis and the present

study is that the new GPS data constrain the deformation at the dike (the magma “sink”) as well as at the

Kilauea summit magma chamber (one of the magma sources).

Data

Stanford University, the Hawaiian Volcano Observatory, and the University cooperatively operate a

network of permanent GPS receivers on the Big Island of Hawaii. The GPS receivers record GPS phase and

pseudorange at 30 second intervals and track satellites to 5 degrees above the horizon. For the kinematic

analysis, we decimated the data to an epoch interval of 5 minutes and used a 25 degree elevation mask

[Larson et. al, 2000]. The data were processed using GIPSY/OASIS software package [Lichten and Border,

1987; Zumberge et al., 1997], using IGS orbits and earth orientation parameters. Satellite clock offsets were

estimated using the GPS receiver on Kauai (KOKB) as a reference clock. The data were used to estimate

station positions, receiver clock errors, tropospheric delay parameters, and carrier phase ambiguities, which

were fixed to integers where possible. We processed data from January 29th 1997 through January 31st
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1997 in a continuous stretch to avoid the introduction of artificial breaks in the ambiguities or tropospheric

parameters at the day boundaries. Corrections to the a priori estimates of the tropospheric delay at each

receiver are modeled as a random walk with standard deviation of 14.7 mm per square root day, using the

Niell [1996] mapping function.

The station coordinates were modeled as a random walk processes with a standard deviation of

30 mm /
√

day = 6.1 mm /
√

hr with 15 minute averaging (that is, the random walk or “process noise” is

added every third epoch). Much larger values of the random walk standard deviation lead to excessive epoch

to epoch scatter in the GPS positions, while considerably smaller values do not allow the full displacement

to develop in the course of the transient deformation episode. Larson et al. [2000] compared estimates

of site positions for the baseline crossing the summit caldera (UWEV-AHUP) with a nearby borehole tilt

record, and suggest that a random walk standard deviation of 4.4/
√

hr provides good agreement between

GPS and tilt. We use a slightly larger value for the January 1997 eruption due to the larger magnitude of

the transient signal in this instance. Uncertainties in the kinematic position determinations were estimated

from the repeatability of the station coordinates over the two weeks prior to the eruption when no transient

deformation is thought to have occurred.

Figures 13 and 14 show the north and east components of displacements for stations NUPM, KTPM,

and KAEP relative to station MLPM, which is located on Mauna Loa and not influenced by the intrusion.

Notice that NUPM, located north of the rift, moved north during the eruption, whereas the other stations,

located south of the rift, moved to the south. The data clearly show that deformation began soon after

the onset of harmonic tremor, approximately 6 or 7 hours before the onset of the eruption. A striking

observation is that only a fraction of the eventual displacement accumulated prior to the eruption. For

example, KTPM moved south roughly 17 cm prior to the eruption, but eventually displaced nearly 30 cm

by the end of day 32.
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Dike Volume History

The continuous GPS measurements can be used to estimate the dike volume as a function of time, in

much the same way that earthquake source time functions are estimated from seismic data. Assuming the

deformation is elastic, the observed displacements are proportional to the dike volume for stations far from

the dike relative to the dike depth and length. For stations closer to the dike, the displacements depend on

the dike length and height, which change as a function of time as the dike is emplaced.

The measured displacement as a function of space and time is

ur(x, t) =
∫

Σ

sp(ξ, t)Gr
pq(x, ξ)nq(ξ)dΣ(ξ). (1)

In (1), s(ξ, t) represents the spatially and temporally varying displacement discontinuity, p, q, r, = 1, 2, 3,

summation on repeated indices is implied, and nq(ξ) is the unit normal to the fault surface Σ(ξ). The

Gr
pq(x, ξ) are proportional to derivatives of the elastostatic Green’s tensors [e.g., Aki and Richards, 1980]. If

we restrict the dike displacement to opening (p = 3), and for simplicity assume that the opening is uniform

on the dike surface, which is rectangular with along-strike width W and height h(t), then (1) becomes

ur(x, t) = ∆V (t)
∫ h(t)

0

∫ W

0

Gr
3q(x, ξ)nq(ξ)
W · h(t)

d(ξ1)d(ξ2) (2)

= ∆V (t)Fr(x, t). (3)

The kernels Fr(x, t) were computed for stations NUPM, KTPM, and KAEP, all relative to MLPM. The

volume history ∆V (t) was then found by least squares. To simplify matters we assume that the dike

propagates vertically at a constant rate from an initial depth of 3 km [Owen et al., 2000a]. After the

eruption onset, Fr(x, t) is constant, equivalent to a 3 km high dike just reaching the surface. We also

estimate the volume change associated with a shallow magma body located beneath Makaopuhi crater.

Errors in the kinematic GPS position time series are not well understood. We estimate that the errors in

the east components are roughly twice those in the north; while the vertical errors are roughly five times

the north components. The detailed results are somewhat sensitive to the choice of error model, although
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the qualitative pattern does not change. The estimate of ∆V (t) accounts for the fact that the GPS data

were processed assuming a random walk model for the station positions. This is simply achieved by taking

first differences of the data, estimating the rate of change of volume, and then integrating to obtain the

volume history.

A further question is how to weight the various stations. KAEP is far from the rift zone relative to the

dike height and length, and therefore insensitive to details of the dike geometry. NUPM and KTPM, on

the other hand, are close to the rift and are thus somewhat sensitive to the evolving dike geometry and the

presence of deflation sources within the rift zone. We have chosen to downweight NUPM and KTPM by a

factor of three relative to KAEP. This leads to total volume estimates that agree well with those based on

all of the campaign and continuous GPS data [Owen, et al., 2000a].

Figure 15a shows the estimated volume history. The net volume at the end of day 32 is 23 million cubic

meters, in good agreement with the result found by Owen, et al. [2000a] based on the differences in daily

position estimates from the full network of GPS sites before and after the eruption. Placing more weight

on the data from NUPM and KTPM increases the final volume, but does not change the shape of the

curve. The predicted displacements from the inferred source time history are shown in Figures 13 and 14.

Assuming a random walk error model for the station coordinates is equivalent to fitting the time derivative

of the data. Thus, underestimating the rate of motion soon after the onset of tremor, as in the north

component of KTPM, causes the predicted curve to be offset from the data for all subsequent times.

The most striking features of Figure 15a are the convex upward character and the fact that only two

thirds of the total volume change occurred at the onset of the eruption. Figure 15b shows the volume

change associated with the rift zone magma body near Makaoapuhi. The net volume decrease there is

between 1.0 and 1.5 million cubic meters, again in good agreement with the 1.2 million cubic meters found

by Owen, et al. [2000a]. Finally, Figure 15c shows the flux of magma into the dike as a function of time,

obtained from a smoothed derivative of the volume history. The surprising result is that the dike moment

rate, or volume flux, decreases with time after the onset of harmonic tremor. We show in the next section

that simple models of dike propagation predict dike moment rates that increase with time.
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Dike Propagation Under Constant Pressure

We consider the dike shown in Figure 16a, with width W , height h, and thickness δ. The dike volume is

Vd ∼=
π

4
δhW. (4)

For a dike subject to uniform driving pressure over the dike plane, and h << W , the maximum opening is

given by

δ ∼= 2(1− ν)
∆p

µ
h (5)

where the driving pressure is ∆p = p − σ, with p the magma pressure in the dike, and σ the compressive

stress normal to the dike plane, µ is the shear modulus, and ν is Poisson’s ratio [e.g., Pollard and Segall,

1987]. This approximation does not account for free surface effects, which would tend to increase the

opening, or the finite along strike dimension of the dike, W, which would tend to decrease the opening.

From (4) and (5) the dike volume is proportional to h2

Vd ∼=
π(1− ν)

2
∆p

µ
Wh2 (6)

The first approximation that we might make is that the dike grows at a constant rate, and that the driving

pressure remains constant. In this limit the dike volume, and hence the far-field surface displacements,

are expected in increase with the square of time until the onset of the eruption. If we adopt a model in

which the dike is semi-circular and grows radially (Figure 16b), then the volume will scale with the dike

radius cubed and for constant propagation rate the volume would increase with time cubed until the dike

intersects the surface.

The rate of dike growth, however, is controlled by the rate at which magma flows to the dike tip [Rubin,

1995] and is therefore not constant. The magma flow rate is proportional to the driving pressure gradient

from the dike inlet to the dike tip, and the square of the aperture. Letting ∆p denote the pressure at the

dike inlet, the pressure gradient along the dike is proportional to ∆p/h. Assuming that the width W is

much greater than the opening δ, then the flow rate will be proportional to δ2. From (5), this leads to

dh

dt
∼= 1

3η

(
∆p

h

)(
∆ph

µ

)2

=
µ

3η

(
∆p

µ

)3

h (7)
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where η is the magma viscosity. Rubin [1995] shows that this simple expression predicts the magma flow

velocity to within a factor of four of that given by more complete calculations that account for variations

in dike thickness and magma pressure gradient. Note that the propagation rate is proportional to dike

height, so that for constant ∆p dike height increases exponentially with time; h(t) = h0exp(t/τprop) with

characteristic time

τprop ≡
3η

µ

(
µ

∆p

)3

. (8)

This simple model predicts the dike height increases exponentially. Similar results are obtained for more

complex models [Mériaux and Jaupart, 1998, Figure 15; Ida, 1999, Figure 3]. In the simple model here,

the dike volume (proportional to h2) grows super-exponentially until the time of the eruption; after that

the volume does not change. Assuming, as discussed above, that the displacements depend to first order

on the dike volume, we would predict super-exponential increase in extension across the rift prior to the

eruption and no change afterward. This is clearly inconsistent with the GPS data, which show that the rate

of volume change decreased with time and that much of the rift extension occurred after the onset of the

eruption.

What is wrong with the simple model? A number of approximations are suspect. First of all the dike

almost certainly does not grow at fixed along-strike width. It is reasonable to expect that the dike has a

more elliptical plan shape, and may continue to propagate along strike after the dike breaches the surface.

Secondly, the pressure term in the gradient driving flow, ∆p/h, should be interpreted as the pressure in

excess of the effective pressure in a static column of magma, ∆ρg, where ∆ρ is the difference between

rock and magma density and g is the gravitational acceleration. Finally, the assumption that the dike

inlet pressure remains constant is almost certainly not met [see also Ida, 1999]. Magma flows to the dike

from one or more reservoirs and must pass through conduits of finite dimensions to reach the dike inlet.

Indeed the record of tilt at Kilauea summit during the 1997 Napau eruption (Figure 17b) shows deflation

of the summit magma chamber beginning soon after the onset of harmonic tremor. Notice from Figure 17b

that roughly 40% of the total tilt signal during the 48 hour period shown occurred before the onset of

the eruption. Figure 17 shows that the summit tilt and dike volume (from Figure 15) are mirror images,
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reflecting the fact that magma leaving the summit magma chamber is intruded in the dike. It should

be noted that analysis of the surface deformation shows that only a small fraction of the total magma

supplied to the dike came from the shallow summit chamber [Owen et al., 2000a]. Nevertheless, the strong

association of summit tilt and dike volume suggests that there are other time constants, controlled by the

rate at which magma flows to the dike inlet, that govern dike propagation.

Coupled magma chamber dike system

Consider the simple model of a single magma chamber connected to a propagating dike (Figure 18).

The actual situation during the 1997 Napau eruption was undoubtedly more complex. We have evidence

from the geodetic displacements of a second magma reservoir near Makaopuhi Crater in the East Rift zone

[Owen et al., 2000a]. Magma was also supplied from the lava pond at Pu’u O’o, and geochemical data

indicate mixing of fresh magma with melt stored within the rift zone [Thornber, 1997]. Nevertheless, we

start by considering a single magma chamber that we loosely associate with the shallow summit reservoir.

We take the dike to be a half-ellipsoid with half length a, half height b, and maximum opening δ

(Figure 18). The volume of the dike is thus

Vd =
π

3
abδ. (9)

The maximum opening at the center of an elliptical penny shaped crack is

δ =
2b(1− ν)∆pd

µE(k)
, (10)

where E(k) is the complete elliptic integral of the second kind of modulus k =
√

1− b2/a2, [e.g., Mura,

1982].

We take the growth rate in length and width to be proportional to the pressure gradient and the dike

aperture squared, as in (7), so that

da

dt
=

1
3η

[
2b(1− ν)∆pd

µE(k)

]2(∆pd
a

)
(11a)

db

dt
=

1
3η

[
2b(1− ν)∆pd

µE(k)

]2(∆pd
b
−∆ρg

)
, ∆pd > ∆ρgb (11b)
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where ∆ρ is the effective difference between the magma and rock density. As discussed by Rubin

[1995], the gradient driving upward magma flow is dp/dz − ρmg. Because we have defined the pressure

∆p as the difference between the magma pressure and the dike normal stress, this is equivalent to

d∆p/dz + dσ/dz − ρmg. We take the vertical gradient of the stress to be some fraction ε of the lithostatic

stress, i.e. dσ/dz = ερrg, where ε must be less than unity for the least principal stress to be horizontal.

Thus, we may write the effective vertical pressure gradient as d∆p/dz −∆ρg, where the effective density is

∆ρ = (ρm − ρr) + (1 − ε)ρr. Note also that the second equation holds only for ∆pd > ρgb, and db/dt = 0

otherwise.

Equations (11) describe one dimensional flow along each of the principal axes of the dike, and thus do

not account for the radial divergence in two dimensional flow from an inlet. For pressure p0 prescribed at

an inlet of radius r0, the fluid velocity is given by

vr =
p0δ

2

3η r log(R/r0)
(12)

where δ is the width of the opening, and R is the radial distance at which the pressure drops to zero. The

dike propagation rate can thus be approximated by the velocity at the dike tip, which is taken at r = R. At

this level of approximation, the dike growth rate dR/dt is identical to (11) except for the log(R/r0) term.

The logarithmic term is sufficiently weak that numerical solutions are not significantly altered at early times

when the dike is expected to be circular. Further work is needed to address flow into an elliptical dike.

Prior to the onset of the eruption, mass is conserved in the dike and chamber. This requires

dmd/dt = −dmc/dt = q, where md is the mass of magma in the dike, mc is the mass of magma in the

chamber and q is the mass flux from the chamber to the dike. Assuming the magma flux is proportional

to the pressure difference between the chamber and the dike, q = −c(pd − pc), so that conservation of mass

implies

dmd

dt
= −dmc

dt
= c(∆pc −∆pd) (13)

The constant c depends on the conduit geometry and the melt viscosity. The dike geometry is sufficiently
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compliant that we can ignore the compressibility of the magma, i.e., d(md)/dt = ρmdVd/dt, and

dVd
dt

=
c

ρm
(∆pc −∆pd). (14)

The magma chamber, on the other hand, may be nearly spherical, and therefore much less compliant than

the dike. In this case we include the magma compressibility and write

dmc

dt
= ρm

(
dVc
dt

+ Vcβm
d∆pc

dt

)
(15)

where βm is the magma compressibility. We can also define an effective magma chamber compressibility,

βc = (1/Vc)dVc/dpc. For example, for a spherical magma chamber at a depth significantly greater than its

radius, βc = 3/4µ [e.g., McTigue, 1987]. With this definition of βc (15) becomes

dmc

dt
= ρmVc(βm + βc)

d∆pc
dt

. (16)

From this point onward, we will use β̄c = (βm + βc) to indicate the compressibility of the magma chamber,

including both the compressibility of the cavity and the magma.

Combining (16) and (13) yields an equation governing the magma chamber pressure

d∆pc
dt

=
−c

ρmVcβ̄c
(∆pc −∆pd). (17)

The chamber pressure decreases when it is at higher pressure than the dike, and melt flows out of the

magma chamber. For the dike we combine mass conservation (14) with the dike volume relation (9) and

(10) to find

d∆pd
dt

=
3µcE(k)

2π(1− ν)ρm
(∆pc −∆pd)

ab2
− (1−A)

∆pd
a

da

dt
− (2 + A)

∆pd
b

db

dt
, (18)

where A is defined as

A =
(

E − F

E

)(
1

a2/b2 − 1

)
. (19)

In deriving (18) we have made use of the fact that dE/dk = (E − F )/k, where F is the complete elliptic

integral of the first kind with modulus k. The first term on the right hand side of (18) represents flow of

magma from the chamber into the dike. Flow acts to increase the magma pressure in the dike whenever the
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chamber pressure exceeds that in the dike. The remaining two terms are related to dike growth. If there is

no flow into the dike (c = 0), then the mass of melt in the dike remains constant and the magma pressure

must decrease as the dike propagates. The quantity A ranges from zero for a thin blade like dike to -0.5 for

a circular crack, so that the second and third terms on the right hand side of (18) are never positive when

the dike is growing (da/dt > 0, db/dt > 0).

Equations (17) and (18) together with the dike propagation equations (11) form a system of 4 coupled

non-linear equations in the variables (∆pc,∆pd, a, and b).

The above results hold only when mass is conserved in the dike-chamber system. Once the dike breaches

the surface and begins to erupt, equation (14) is no longer valid. At this point the mass change within the

dike is the difference between the flux into the dike, q, and the flux to the surface. We take the latter to be

proportional to the difference between the pressure at the dike inlet and the magma static pressure. Thus,

(14) is replaced with

dVd
dt

=
c

ρm
(∆pc −∆pd)−

c2

ρm
(∆pd −∆ρgd), (20)

where the constant c2 depends on the dimensions of the dike and the magma viscosity, and d is the dike

height (equal to the depth, since the dike reaches the surface). Combining (20) with the dike volume

relation (9) and (10), yields an expression for the pressure change within the dike

d∆pd
dt

=
3µE(k)

2π(1− ν)d2a

[
c

ρm
(∆pc −∆pd)−

c2

ρm
(∆pd −∆ρgd)

]
− (1−A)

∆pd
a

da

dt
. (21)

The first term in the square brackets represents flow into the dike, the second eruptive flow onto the earth’s

surface. The final term represents a pressure decrease due to continued along strike propagation. We can

approximate the flux out of the dike by assuming flow through a tabular conduit of height d, thickness δ,

and along strike length ωa, where 0 < ω < 2. That is, the length of the eruptive fissure is approximated

as some fraction of the dike length, 2a. In this case c2 = ρmδ3ωa/12ηd [e.g., Bird, et al., 1960], and δ is

given by (10). This is a crude approximation that may be good for short times following the onset of the

eruption. As time progresses, magma within the dike begins to freeze, channeling flow to a single circular

vent, which can more efficiently transport magma to the surface [Delaney and Pollard, 1981]. This process
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occurs on a time scale of a few days. We leave thermal effects for future analysis, and note that in the

isothermal limit the volume flux out of the dike (second term in equation (21)) is

qerupt =
2(1− ν)3d2ωa∆p3

d

3ηµ3E3(k)
(∆pd −∆ρgd) ∆pd > ∆ρgd. (22)

The flux in (22) can be integrated to yield the total erupted volume. With this approximation for c2 and

the dike opening given by (10), equation (21) becomes

d∆pd
dt

=
3µcE(k)

2π(1− ν)ρmad2
(∆pc −∆pd)−

µ(1− ν)2ω

πηE2(k)

(
∆pd
µ

)3

(∆pd −∆ρgd)− (1−A)
∆pd
a

da

dt
. (23)

Note again, that the first term represents pressure change due to flow into the dike from the magma

chamber, the second pressure loss due to eruptive flux out of the dike, and the third pressure loss due to

lateral propagation of the dike. We assume that the second term holds only for ∆pd ≥ ∆ρgd, although one

could imagine drainback occurring if the pressure dropped below ∆ρgd.

We can further approximate the eruptive length ωa by imagining that the dike continues to grow with

height according to (11b) even above the earth’s surface (Figure 19). The intersection of the fictitious

ellipse with the free surface, i.e., ω = 2<(
√

1− d2/b2), where < indicates real part, provides a measure of

the along strike fissure dimension ωa. This measure of eruptive length scales with the total dike length, and

allows ω to increase if the dike has sufficient pressure such that b would have exceeded the depth d.

Non-dimensionalization

We normalize the pressures ∆pc and ∆pd by the initial pressure ∆p0, assumed equal in the dike and

chamber, as no flow occurs in the initial state. The dike height is normalized by the depth d, and time by

the characteristic time for magma propagation, τprop, where τprop is defined, as in (8), at the initial pressure

∆p0,

p̃c =
∆pc
∆p0

; p̃d =
∆pd
∆p0

; ã =
a

d
; b̃ =

b

d
; t̃ =

t

τprop
; (24)

where

τprop =
3η

4(1− ν)2µ

(
µ

∆p0

)3

. (25)
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This leads to the following system of equations:

dã

dt̃
=

p̃3
db̃

E2(k)
(b̃/ã) (26a)

db̃

dt̃
=


p̃2
db̃

E2(k) (p̃d − αb̃) if b̃ < 1 and p̃d > αb̃

0 otherwise
(26b)

dp̃d

dt̃
=


RE(k)

ãb̃2
(p̃c − p̃d)− (1−A) p̃dã

dã
dt̃
− (2 + A) p̃d

b̃
db̃
dt̃

if b̃ < 1

RE(k)
ã (p̃c − p̃d)− (1−A) p̃dã

dã
dt̃
− 3ω

4πE2(k) p̃
3
d(p̃d − α) if b̃ = 1

(26c)

dp̃c

dt̃
= −RΨ(p̃c − p̃d) (26d)

where the three non-dimensional quantities are

α =
∆ρgd

∆p0

(27a)

R =
τprop
τflow

=
9ηcµ3

8πρm((1− ν)∆p0d)3
; τflow =

2π(1− ν)ρmd3

3µc
(27b)

Ψ =
2π(1− ν)d3

3Vcβ̄cµ
(27c)

and τflow is the characteristic time for flow between the magma reservoir and a stationary dike with height

b̃ = 1 and length ã = 1.

The first two of the governing equations are just the non-dimensional form of (11), and control the rate of

horizontal and vertical dike propagation, respectively. We find, as before, that the rate of dike propagation

is proportional to dike length and to the cube of the dike driving pressure. Propagation in the vertical is

controlled by the pressure in excess of the effective magma-static gradient, αb̃. The dimensionless parameter

α is the ratio of the pressure due to a static column of magma with depth d to the initial dike pressure.

When α << 1 the weight of the overlying magma provides very little resistance to upward flow. On the

other hand if α is only slightly less than unity, there is little overpressure to drive vertical flow.

The third equation in (26) shows that the rate of change of dike pressure is governed by the rate of dike

growth (second and third terms on right hand side), which causes the pressure to decrease, and influx from
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the magma reservoir (first term on right hand side), which causes the pressure to increase. The relative rates

of these processes is controlled by the non-dimensional quantity R which is the ratio of the characteristic

time for dike propagation to that for magma flow into the dike. When R is large the rate of flow to the

dike is fast and the dike propagates at nearly constant pressure. When R is small flow into the dike is slow,

and propagation may be limited by magma supply. The fourth equation governs the pressure history in the

magma chamber, and depends on the product of the dimensionless quantities R and Ψ. The latter can be

put in a more interpretable form, by noting that the compressibility of the dike βd = (1/Vd)dVd/dpd can be

computed from equations (9) and (10). This allows one to write Ψ as

Ψ =
πV f

d βd

2Vcβ̄c
(28)

where V f
d is the final volume of a semi-circular dike with radius equal to the depth d, (a = b = d). We have

also made use of the fact that E(k = 0) = π/2. The parameter Ψ controls the chamber pressure history. If

the chamber volume and/or compressibility is large compared to the dike volume and/or compressibility,

Ψ << 1, then the chamber exhibits little pressure loss. Effectively the dike sees an infinite reservoir which

supplies magma at constant pressure. At the other extreme Ψ ≥ 1 the pressure in the magma chamber

drops rapidly, which will stabilize dike growth.

Finally, we define a reference dike volume as 2π(1−ν)∆p0d
3/3µ, so that the non-dimensional dike volume

is Ṽd = ãb̃2p̃d/E(k). With these definitions, the non-dimensional eruptive flux is

q̃erupt =
3ωã

4πE(k)3
p̃3
d(p̃d − α) (29)

where ω, here and in (26c) is given by ω = <(
√

b̃2 − 1)/b̃. The flux is integrated with respect to time to

give the total erupted volume.

Parameter Values

Before proceeding with numerical solution to the governing equations (26), we discuss the values of the

dimensionless parameters defined in (27). The parameter α reflects the ratio of the magmastatic head to

the initial dike pressure. It is useful to consider the initial magma pressure in terms of the static head of a



17

column of melt, e.g. p0 = ρmg(d + h), where d is the depth of the dike and h is the overpressure in terms of

head. ∆p0 is thus ∆p0 = ρmg(d + h)− ερrgd, and the dimensionless ratio α

α =
[
1 +

(h/d)ρm
ρm − ερr

]−1

(30)

If ε, which is generally bounded by 0 ≤ ε ≤ 1, is too small we would anticipate normal faulting in

the rift zone. While dike intrusions do trigger normal events the rift generally fails in extension rather

than by faulting. According to simple frictional faulting considerations then, neglecting cohesion,

ε ≥ [
√

f2 + 1− f ]/[
√

f2 + 1 + f ], where f is the coefficient of friction. For f ∼ 0.6, ε must exceed

0.32. The overpressure h is unlikely to exceed a few tens of meters. For ε in the range 0.32 ≤ ε ≤ 1,

ρm = 2.6 × 103kg/m3, and ρr = 2.3 × 103kg/m3, 0.95 ≤ α ≤ 1 for h = 15 meters, and 0.90 ≤ α ≤ 1 for

h = 30 meters.

The dimensionless parameter R can be estimated if we define the geometry of the conduit connecting the

magma chamber and the dike, which constrains the constant c in equation (13). For steady uniform flow in

a circular conduit of radius r and length L,

c =
πρr4

8ηL
(31)

[Bird, et al., 1960]. Combining (31) with (27) and (10), leads to

R ∼= r4

δ3L
. (32)

While the average dike opening δ ∼ 2 meters is relatively well constrained by the GPS data, the conduit

radius and length are parameters we would like to be able to constrain by the observations. For a 10 km

long conduit connecting the summit magma chamber to Napau Crater with radius of 2 meters, R ∼ 10−4.

At the other extreme, a conduit with radius 10 m connecting Pu’u O’o and Napau Crater, with L = 3 km,

R ∼ 0.4

The dimensionless parameter Ψ depends on the total volume and compressibility of the magma chamber

feeding the dike, again parameters we would like to estimate from the data. Measurements of surface

displacements, tilts, or strains give the change in volume of the magma chamber. For a spherical chamber,
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the displacements are also related to the product of the change in chamber pressure and the radius cubed

pca
3, where pc is understood to be the change in pressure accompanying deformation, and a is the chamber

radius [McTigue, 1987]. Independent constraints on the change in magma pressure allow one to estimate

the chamber volume. It has been observed that changes in the level of magma in a lava pond correspond

to changes in tilt measured at Kilauea summit [Tilling, 1987], suggesting that the lake levels may be used

as a manometer to measure magma pressure [e.g., Denlinger, 1997]. Lava lake levels may change due to

other processes, including changes in density due to degassing (so called “gas-piston” activity), however

large changes in lava level probably reflect changes in pressure within the magmatic system.

Denlinger [1997] noted that during a period of declining magma efflux the summit tilt varied quadratically,

changing from deflation to inflation. This observation allowed him to to relate the summit tilt to changes in

magma volume. He also used changes in lava level to relate summit tilt changes to magma pressure. With

these data he estimated the total volume of Kilauea’s magma system to be 240 km3 ( 160 km3 to 320 km3).

The long pause in the eruption at Pu’u O’o following the January 30, 1997 eruption can be used to place

constraints on the size of the summit magma chamber. Lava was first sighted in the Pu’u O’o pond on

February 24, 1997 [Harris et al., 1997]. At this point the lava level was 250± 10 meters beneath the north

rim of the cone [Thornber, personal communication, 1999]. By March 21, 1997 the depth of the lava lake

had increased by ∼ 100 meters (150 meters beneath the north rim). Thus, between February 24 and March

21, the lake level rose 100m, corresponding to a pressure increase of 2.7 Mpa.

During this same time, the GPS baseline AHUP-UWEV continuously extended, indicating an increase

in the volume of the summit magma chamber (Figure 20). The GPS data can be used to estimate the

change in the volume of the magma chamber, assuming a spherical source beneath Kilauea summit. While

Owen et al. [2000a] found a source depth of 1 to 2 km for the deflation associated with the 1997 Napau

eruption, Dvorak and Okamura, [1987] estimate chamber depths of 3 to 5 km from analysis of tilt data.

Owen et al. [2000b] estimate the depth of a deflating chamber at between 0.5 to 3.5 km from campaign

GPS measurements between 1990 and 1996. In this analysis we assume a source depth of 3 km.

We used the daily GPS position determinations and covariance matrices to estimate the rate of volume
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change, assuming a constant rate during the one month interval. The fit to the horizontal components of

the GPS baseline are shown in Figure 20. The computed volume change is 2.3 × 10−3 km3, leading to

dV/dP = 0.8m3/Pa, much smaller than estimated by Denlinger [1997], but similar to the 0.6m3/Pa value

estimated by Johnson [1992] for the refilling of the Mauna Ulu lava lake in May of 1973.

The volume of the magma chamber is then given by

Vc = β−1
c (1− pcβm)

dVc
dp∗c

, (33)

where βc is the magma chamber compressibility defined after equation (15), dp∗c is the apparent pressure

change, i.e., that given by ρmgdh, dh being the change in height of the magma pond. For a spherical

magma chamber, β−1
c = 4µ/3. For a shear modulus µ of 20 GPa and magma compressibility βm of 0.1

GPa−1 [Fujii and Kushiro, 1977], we estimate Vc to be ∼ 20 km3, which agrees rather well with estimates

of 27 km3 from seismic tomography [Dawson et. al., 1999]. A volume of 20 km3 corresponds to a magma

chamber radius of 1.7 km, only half the source depth. McTigue [1987] however, showed that the effects of

chamber finiteness are small even for radius to depth ratios of 0.5.

Our estimate of the summit magma chamber volume is substantially less than the 240 km3 that Denlinger

[1997] estimates for Kilauea’s magma system, including both summit and rift magma reservoirs. Denlinger’s

[1997] estimate may be biased if magam intrudes the deep rift zone, as suggested by the work of Delaney

et al. [1990] and Owen et al. [1995], at a rate that varied with time. Our estimate could be biased if the

magma chamber geometry departs significantly from an equant chamber. Taking the full range of estimated

Vc, Ψ lies in the range 0.03 to 0.4.

Modeling of the deformation accompanying the Napau eruption demonstrated that only a fraction of the

magma supplied to the dike and the eruption came from the summit chamber [Owen, et al. 2000a]. It is

estimated that ∼ 106m3 of lava drained from Pu’u O’o during the Napau eruption, approximately half of

the magma supplied to the dike and eruption [Hawaii Volcano Observatory, unpublished data]. Including

a surface lava pond as a magma supply requires only modest modification to the coupled chamber dike

equations.
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Write equation (15), ignoring the effects of melt compressibility as

dmc

dt
= ρ

dVc
dpc

dpc
dt

(34)

Assuming we can model the lava pond as a cylinder of radius rp, and noting that the pressure at the base

of the cylinder is ρg times the height of the magma column, Vc = πr2
ppc/ρg. Combining this with (34) and

(13) leads to

dpc
dt

=
−cg

πr2
p

(pc − pd) (35)

which is of precisely the same form as (17). Thus, the governing equations do not change as long as we

interpret Ψ to be

Ψ =
2(1− ν)ρmgd3

3µr2
p

. (36)

For a radius rp of 100 m, and the range of shear moduli discussed above, Ψ ranges from order 1 to 10.

Solutions to the Coupled Equations

Analytical solutions to the governing equations are difficult to find. The results of Dvorak and Okamura,

[1987], are recovered from equation (17) if we assume that the dike pressure pd suddenly drops to a constant

value pd < pc. This leads to a chamber pressure that decays exponentially with time constant

τchamber =
8ηVcβcL

πr4
, (37)

assuming a cylindrical conduit with radius r and length L. Dvorak and Okamura [1987] discuss evidence

that subsidence events associated with lower East Rift Zone eruptions (large L) are associated with longer

summit tilt events. More generally, the duration of the summit tilt excursion depends on both the hydraulic

properties of the system and how rapidly the dike propagates and the pressure drops.

In the limiting case that the dike inlet pressure does not change with time, and the aspect ratio b/a << 1,

so that E(k) ∼= 1, then (26b) is simply integrated to yield

b̃(t̃) =
b̃0e

t̃

αb̃0(et̃ − 1) + 1
. (38)
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At short dimensionless times the dike growth is exponential, as expected from earlier discussion, however

at longer times the dike height approaches a constant equal to 1/α. If the initial magma pressure is not

much over magma-static, that is α is close to 1, the dike will slow as it approaches the surface. If α = 1

the dike does not reach the surface in finite time. This effect is likely to be important in explaining the

observed source time history. Coupling between the dike and magma reservoirs must also be important,

since measured tilt and GPS displacements confirm pressure declines within these magma bodies at the

same time the dike was being emplaced.

The non-dimensional first-order non-linear ordinary differential equations were integrated numerically

with initial conditions: p̃d(0) = p̃c(0) = 0, and ã(0) = 2b̃(0) = 0.02. The initial pressure in the dike and the

magma chamber are identical and equal to the dike normal stress. The dike is initially slightly elongate

along strike, however the dimensions are only 2% of the depth beneath the Earth’s surface. Solutions are

stopped after either some nominal time is exceeded, the difference between the dike and magma chamber

pressures falls below a critical value, or the dike length along strike exceeds some value.

Example solutions, not necessarily intended to fit the data from the Napau 1997 eruption, are shown

in Figure 21. The first few examples consider large values of R so that the characteristic time for flow

between the chamber and dike is small, and the dike and chamber pressures remain nearly equal. The

result for R = 20,Ψ = 0.01, α = 0.95 is shown with a solid line. The dike height increases rapidly until

the dike hits the surface b̃ = 1. As the dike is propagating upward the aspect ratio, which is initially

elongate along strike, becomes more circular and ã/b̃ ∼ 1. This is due to the fact that if one dimension

becomes shorter than the other, the pressure gradient in that direction increases and the dike speeds up.

Thus, for small dikes the tendency is for circular plan shapes. This holds until the dike begins to sense the

gravitational resistance to upward flow. From this point onward the dike grows far more readily in the

horizontal direction than the vertical, leading to an elongate blade-like intrusion [see also Rubin, 1995]. The

model predicts a small amount of erupted material, but less than 1% of the intruded volume. At the end of

the run the dike and chamber pressures are nearly equal. While we do not model thermal effects, it is safe

to consider that without a pressure difference to drive flow the dike is “frozen”.
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Modifying any of the parameters significantly alters the predicted behavior. Increasing α even slightly

to 0.97 results in an intrusion rather than eruption (Figure 21). This come about by slightly decreasing

the initial pressure ∆p0 or by decreasing the dike normal stress by decreasing ε. For example, with

an overpressure of h of 15 meters, ρm = 2.6 × 103kg/m3, and ρr = 2.3 × 103kg/m3, and ε = 1, α is

approximately 0.95. Decreasing ε slightly to 0.91 increases α to 0.97. In this particular example the dike

gets extremely close to the surface, b̃ = 0.99, so that one could imagine that vesiculation could buffer the

pressure near the dike tip, permitting an eruption. Nevertheless, the important result is that low initial

pressures and/or extensional stress environments favor intrusion rather than eruption. In this example the

dike continues to propagate horizontally for a long time before the run is terminated. In actual rift zones

the dike normal principal stress presumably varies due to a number of processes including previous intrusion

events. It is reasonable to imagine that the dike stops propagating if it runs into a region of sufficiently low

driving stress, ∆p = p− σ.

Increasing Ψ also decreases the tendency for the dike to reach the surface and initiate an eruption. The

effect of increasing Ψ to 0.1 is shown as the dashed line in Figure 21. With a smaller or less compressible

magma chamber the pressure drops more dramatically stabilizing the dike. In this example the dike height

reaches b̃ = 0.91, and length ã ∼= 15. At this point the pressure difference between the chamber and the

dike is 10−4 of the initial pressure and the dike is frozen. Note again the tendency to produce elongate,

blade-like dikes.

Finally, we consider the effect of varying R, the ratio of characteristic times for dike propagation (at

constant driving pressure) and flow between the magma chamber and the dike. Figure 21 illustrates the

effect of decreasing R to 0.1. Because flow into the dike is restricted, the dike pressure drops much more

dramatically than for large values of R, stabilizing the dike. Note that the dike pressure actually begins to

rise after the dike stops propagating vertically. With Ψ = 0.01, the magma source is sufficiently large that

the dike continues to grow along strike until the computation is stopped.

All three parameters thus effect the tendency for a dike to reach the surface initiating an eruption. Small

values of α corresponding to high initial magma pressures and/or relatively large dike normal compression
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(although the dike normal stress must be the minimum principal stress) favor eruptions. Decreasing the

initial dike pressure or the dike normal compression favors intrusion. Small Ψ corresponding to large

compressible magma reservoirs favor eruption. With larger values of Ψ the magma pressure drops favoring

intrusion. Finally the hydraulics of the plumbing system connecting the dike and chamber, through

parameter R effect the duration of the process and the tendency for eruption. For small values of R flow

into the dike is slow and the dike pressure drops, stabilizing the dike and inhibiting eruptions. Large values

of R corresponding to highly conductive conduits favor eruptions.

Comparison to Data

A goal of this work is to use observations to constrain the physical properties of the volcanic system. We

can compare these models to the dike volume history (Figure 17a), which has been directly estimated from

the GPS observations. The summit tilt record (Figure 17b) reflects the temporal evolution of the magma

chamber pressure. In addition, inversion of the GPS data showed that the final dike length is roughly

twice the depth [Owen et al., 2000a]. Geologic and geodetic observations constrain the relative volumes of

erupted and intruded basalt [Owen et al., 2000a].

We searched a subspace of the R,Ψ, α parameter space to determine: i) whether the dike is predicted

to reach the surface, ii) the ratio of the dike volume at the onset of the eruption to the final dike volume,

iii) the ratio of erupted to intruded volume, iv) the ratio of the magma chamber pressure at the onset of

the eruption to the final chamber pressure. In none of the cases we examined were we able to fit all of the

observations, indicating that the simple description is lacking in some significant aspects.

The solution for R = 20,Ψ = 0.01, α = 0.95 in some way mimics the observations, in that the erupted

volume is very small compared to the intruded volume, and the dike volume at the onset of the eruption is

a small fraction of the final dike volume. There are two problems with models of this sort, however. First,

R of 20 is substantially larger then we judge to be reasonable, and would require a very wide short conduit

connecting the magma reservoir and dike. Secondly, the dike aspect ratio b/a becomes very small as the

dike continues to propagate until the reservoir pressure is depleted. As discussed above, lateral variations
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in the magnitude of the dike normal stress may limit the dike length.

We examined solutions in which along-strike dike propagation is artificially terminated when the length

equals twice the dike depth. Figure 22 shows representative results. In this case, the magma pressure

within the dike begins to recover after the dike stops propagating downrift. The dike never reaches the

surface, however. It should be noted that calculations ignore the effects of vesiculation which will act to

buffer the pressure near the dike tip. As this effect becomes important in the upper few hundred meters

for basalts [Wilson and Head, 1981], vesiculation will tend to influence dikes that would otherwise stall

very close to the surface. Including the effect of vesiculation could allow dikes such as those in Figure 22

to breach the surface. On the other hand, cooling of the melt during intrusion results in large changes in

apparent viscosity and ultimately freezing of the basalt. Thermal effects likely limit dike propagation at low

velocities and are central in how flow develops during the course of an eruption [Delaney, 1982].

It should also not be forgotten that the single magma chamber model considered here is probably not

appropriate to the 1997 Napau eruption on Kilauea. We have good evidence that magma was supplied to

the dike not only from the summit magma chamber, but also the lava pond at Pu’u O’o, and quite likely

from magma reservoirs within the East Rift Zone [Owen et al., 2000a]. Given the small size of the 1997

dike, the distribution of measurements, and our lack of knowledge of the time history of magma leaving

the Pu’u O’o lava pond, it is not feasible to explore multi-chamber models. Finally, the lumped parameter

description, which does not allow for spatial variability in any of the field parameters, such as dike pressure,

is likely to be limited in its ability to make quantitative predictions.

However, it should be possible with improved spatial coverage of surface displacement, strain, and tilt, to

far better constrain the spatio-temporal evolution of dikes as they are emplaced, particularly for larger dikes

for which the signal to noise ratio will be higher. In these cases it will be possible to invert for dike growth

history, both horizontally and vertically, as well as the dike volume as a function of time. Comparing these

observations with models of the type developed here should allow us to infer much about the plumbing

system of volcanoes, including the size and shape of magma reservoirs, and the effective dimensions of

conduits that supply magma to the growing dike. Ultimately, it may prove possible to use the time history
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of deformation measured at the Earth’s surface to predict whether a growing dike will end in an eruption

or an intrusion.

Conclusions

Continuous measurements of deformation accompanying dike intrusions can be used to determine the

dike volume history, effectively the source time function of the dike. The volume history can be used to

place constraints on the dynamics of dike propagation. For the 1997 Napau eruption at Kilauea, we find

the dike volume-rate decreased with time and that only two thirds of the dike volume accumulated prior to

the onset of the eruption. At present it is unknown whether these are common characteristics of basaltic

dike intrusions.

The summit magma chamber’s deflationary tilt history closely mirrors the volume increase in the dike,

strongly suggesting that the two magma bodies are coupled, and the dike pressure decreased during

propagation. For a simple lumped parameter model of the coupled dike magma-chamber system the

predicted behavior depends on three dimensionless parameters: R, the ratio of the characteristic time for

dike propagation to the characteristic time for magma flow between the chamber and the dike; Ψ measures

the compressibility and size of the magma chamber relative to the dike; and α, the ratio of the effective

head of a column of melt equal to the depth of the dike to the initial pressure within the dike. Whether

or not the dike breaches the surface, leading to an eruption, depends on these dimensionless parameters.

Eruptions are favored by small α, equivalent to large initial pressures and/or relatively compressive stress

normal to the dike, small Ψ equivalent to large magma chambers, and large R corresponding to high

hydraulic conductivity between the chamber and the dike.

Model predictions are compared to the ratio of the dike volume at the onset of the eruption to the final

dike volume, the ratio of erupted to intruded volume, the ratio of the magma chamber pressure at the

onset of the eruption to the final chamber pressure. While we were unable to fit all of the observations

satisfactorily, the best fits were obtained for values of R considerably larger than expected. This may

suggest that much of the magma filling the dike came from nearby sources through highly conductive
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sources. Similarly, Owen et. al., [2000a] found that only a small fraction of the melt was supplied directly

from the shallow summit magma reservoir. At the same time interpretation is complicated by the likelihood

that the dike was fed from multiple sources, including magma chambers at Kilauea summit, and the East

Rift Zone, as well as the lava lake at Pu’u O’o. In addition, magma vesiculation, thermal effects, and

variations in dike-normal stress complicate quantitative analysis. More observations are needed to see if

other dikes grow in a similar fashion to the 1997 Napau dike, and to determine whether the simple model

of coupled dike and magma chambers has useful predictive capabilities.
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Figure 1. Location map showing the 1997 fissures, the map projection of the dike inferred from the

inversion of geodetic observations (rectangle) from Owen et al., [2000a]. The location of the continuously

recording GPS stations referred to in the text are shown by stars. Also shown are the observed (black)

with 95% confidence error ellipses and predicted (gray) displacement vectors from a combination of

permanent and campaign GPS sites. The circles mark the locations of the inferred centers of deflation.

The inset shows a close-up of the Kilauea summit region.
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Figure 2. North component of displacement for continuous GPS stations relative to station MLPM on

Mauna Loa. (a) NUPM (b) KTPM (c) KAEP. The data are shown as pluses and the predictions of a

simple time varying dike model are shown as the solid curve. The observational errors follow a Gaussian

random walk, equivalent to fitting the time derivative of the observations. The first vertical line marks

the time of tremor onset, the second vertical line marks the onset of the eruption.
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Figure 3. East component of displacement for continuous GPS stations relative to station MLPM on

Mauna Loa. (a) NUPM (b) KTPM (c) KAEP. The data are shown as pluses and the predictions of a

simple time varying dike model are shown as the solid curve. The observational errors follow a Gaussian

random walk, equivalent to fitting the time derivative of the observations. The first vertical line marks

the time of tremor onset, the second vertical line marks the onset of the eruption.
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Figure 4. Dike volume history estimated from GPS data, assuming that the dike propagates vertically

at a constant rate with fixed along strike dimension. The first vertical line marks the onset of harmonic

tremor, the second the start of the eruption. (a) Dike volume as a function of time; (b) volume of

Makaopuhi source; and (c) dike volume rate, or volume flux, from a smoothed derivative of (a).
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Figure 5. Geometry of a model dike propagating from depth. (a) Dike growing at fixed along strike

dimension W . The dike has height h, thickness δ. The magma pressure at the dike inlet is p and the

remote stress normal to the dike plane is σ. (b) An alternate model in which the dike grows radially

from depth d with radius R.
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Figure 6. Comparison of estimated dike volume history with tilt record at Kilauea summit. (a)

Dike volume history from Figure 15a. (b) Uwekahuna tilt at Kilauea summit. Plot shows E-W tilt in

microradians with positive tilt indicating inflation of the summit magma chamber. Time axis is in hours

(UTC) after midnight January 30, 1997.
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Figure 7. Geometry of the coupled magma chamber dike system. The chamber with magma pressure

pc is connected to the dike through a conduit of length L. Pressure at the dike inlet is pd. The dike is

modeled as a semi-ellipsoid with along strike semi-major axis a and height b.
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Figure 8. Definition of the eruptive fissure length ωa. If the dike height b exceeds the depth d, the dike

is erupting, and the chord ωa can be taken as a measure of the eruptive fissure length.
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Figure 9. East (a) and North (b) components of the baseline between AHUP and UWEV. Each point

with one sigma error bars represents one day position determination from the permanent GPS stations.

The rapid south and east motion of UWEV with respect to AHUP marks deflation coincident with

the January 30, 1997 eruption at Napau Crater. The steady westward and northward motion between

February and March, 1997 marks inflation of the summit magma chamber. Straight lines indicate least

squares fits to the data between February 24 and March 21, 1997, assuming steady-state inflation and a

point center of inflation at a depth of 3 km.
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Figure 10. Simulation of the coupled dike magma chamber system for different values of R,Ψ, and α.

The panels show respectively, dike height h̃(t̃), dike pressure p̃d(t̃), dike volume, magma chamber pressure

p̃c(t̃), erupted volume, and aspect ratio b/a, as a function of non-dimensional time t̃. All quantities are

non-dimensional. Only the case R = 20, Ψ = 0.01, α = 0.95, predicts an eruption, defined as b̃ = 1.

The vertical bar marks the onset of the eruption in this case.
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Figure 11. Simulation of the coupled dike magma chamber system for R = 0.5, Ψ = 0.05, and α = 0.95.

The dike length is limited to twice the dike depth. The panels show respectively, dike height h̃(t̃), dike

pressure p̃d(t̃), dike volume, magma chamber pressure p̃c(t̃), erupted volume, and aspect ratio b/a, as a

function of non-dimensional time t̃. All quantities are non-dimensional.


