THE EVOLUTION OF BODY SIZE
(GES 325/BIOSCI 325)

Course Syllabus Autumn 2006

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tues 9/26</td>
<td>Why does size matter?</td>
</tr>
<tr>
<td>Tues 10/3</td>
<td>Is there an optimum size?</td>
</tr>
<tr>
<td>Tues 10/10</td>
<td>What are life-history correlates with size?</td>
</tr>
<tr>
<td>Tues 10/17</td>
<td>Does size scaling apply equally to all species?</td>
</tr>
<tr>
<td>Tues 10/24</td>
<td>What are population trends in size?</td>
</tr>
<tr>
<td>Tues 10/31</td>
<td>What are the macroevolutionary trends in body size?</td>
</tr>
<tr>
<td>Tues 11/7</td>
<td>Are there alternative explanations for body size trends?</td>
</tr>
<tr>
<td>Tues 11/14</td>
<td>Does size affect extinction risk or taxon longevity?</td>
</tr>
<tr>
<td>Tues 11/21</td>
<td>What limits maximum size? What limits minimum size?</td>
</tr>
<tr>
<td>Tues 11/28</td>
<td>Are there links between micro and macroevolutionary patterns in size?</td>
</tr>
</tbody>
</table>

Instructors
Jonathan Payne, GES, Bldg 320, Rm 230, 725-1606; jlpayne@stanford.edu
Elizabeth A. Hadly, Bio Sci, Herrin Labs 280, 725-2655; hadly@stanford.edu

Readings
Readings available on CourseWork: https://coursework.stanford.edu/

Topics
We will investigate of the influence of organism size on evolutionary and ecological patterns and processes, using the primary literature. We will integrate theoretical principles, observations of living organisms, and data from the fossil record. Questions we will address include: What are the physiological and ecological correlates of body size? Is there an optimum size? Do organisms tend to evolve to larger size? Does size affect the likelihood of extinction or speciation? How does size scale from the genome to the phenotype? How is metabolic rate involved in evolution of body size? This course is intended as a discussion seminar for upper division undergraduates and graduate students. Priority will be given to graduate students.

Requirements
Preference is given to graduate students. The course is offered on a Satisfactory/No Credit basis. One term paper is required; discussion participation is expected.
TENTATIVE READING LIST

Resource Texts
Princeton University Press, 176 pp. (available mid-October)
Schmidt-Nielsen K. 1984. Scaling: Why is Animal Size So Important?

Why does size matter?

Is there an optimum size?
Required
 consequences of an energetic definition of fitness, American Naturalist 142: 573-584.
 benthic marine invertebrates. Integrative and Comparative Biology 42:
 853-861.
5. Roy K., Jablonski D., Martien K.K., 2000. Invariant size-frequency
 distributions along a latitudinal gradient in marine bivalves, PNAS 97:
 13150-13155.

Supplementary
 Paleontological Society), Vol. 2, Supplement to Vol. 42, no. 5 of the
 Journal of Paleontology. Paleobiological Aspects of Growth and
 D.M., Marquet P.A., Maurer B.A., Niklas K.J., Porter W.P., Tiffney B.,

What are life-history correlates with size?

Required

Supplementary

Does size scaling apply equally to all species?

Required

Supplementary

What controls population trends in size?

Required

Supplementary

What are the macroevolutionary trends in body size?

Required

Supplementary

Are there alternative explanations for body size trends?

Required

Supplementary

Does size affect extinction risk or taxon longevity?

Required

Supplementary

What limits maximum size? What limits minimum size?

Required

Supplementary

Are there links between micro and macroevolutionary patterns in size?

Required

Supplementary

