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Abstract

The quantitative evaluation of time-lapse seismic data remains a chalenge. In most
cases of time-lapse seismic analysis, fluid displacement and pressure changes are
detected by changes in amplitude strength, travel time, and/or Poisson’s ratio. However,
the result is till qualitative, due to poor match between the model predictions and the
actual seismic data.

Velocity anisotropy is one important reason for the mismatch. Especialy for
deviated wells in offshore fields, we must correct for vel ocity-anisotropy effects to obtain
realistic sonic-log responses that are equivalent to seismic data. | compile experimental
velocity-anisotropy data from coresin the literature to explore the empirical relationships
between anisotropy parameters and general well-log information. Then, | develop a
method to estimate Thomsen's anisotropy parameters ¢ and y using a regression of the
data in the crossplot domain between velocity and porosity. | present the result of an
application of the method to demonstrate the significance of the correction.

Next, using the corrected velocity information, | present a method of impedance
decomposition using three elastic impedance data derived from the seismic inversion of
angle stacks. By applying seismic inversion, we can derive rock impedance from seismic
data. However, if it is possible to decompose the impedance into two fundamental
properties, namely velocity and density, we can determine the rock trend in the Vp-p
plane, and to derive quantitative rock properties, such as shale volume. | discuss the
effect of noise on the analysis as the most important reason that decomposition is difficult.
Then, | show an innovative method incorporating rock-physics bounds as constraints for
the analysis. The method is applied to an actual dataset from an offshore oil field; |
demonstrate the result of analysis for sand-body detection.

Based on the estimated Vp, Vs, p and shale volume from the elastic impedances, |
develop a workflow to determine the saturation of formation-water, oil and gas from
seismic data through a sequence of analyses and calculations. | present the subsequent
steps, considering the pressure effect and the saturation scale of fluids for time-lapse

seismic analysis. Then, | demonstrate a deterministic approach to computing the fluid



saturation to evaluate time-lapse seismic data. In this approach, | derive the physical
properties of the water-saturated sandstone reservoir, based on the inputs. Next, by
comparing the in-situ-fluid-saturated properties with the 100% formation-water-saturated
reservoir properties, | determine the bulk modulus and the density of the fluid phase in
the reservoir. Solving three equations simultaneously (relating the saturations of water,
oil and gas in terms of the bulk modulus, density and the total saturation), | compute the
saturation of each fluid. | use areal time-lapse seismic dataset to demonstrate the process
and the result. In the result, | emphasize the validity of the workflow for quantitatively
detecting the fluid displacement and for delineating a remaining oil accumulation.

In addition, | present a theoretical approach for understanding rock Vp-Vs relations
using the Hashin-Shtrikman bounds and several effective-medium theories. | discussthe
upper Hashin-Shtrikman bound as the lowest Vp/Vs bound and the lower Hashin-
Shtrikman bound as the highest Vp/Vs bound. | explore Vp-Vs relations by effective-
medium theories in the crossplot domain among Vp, Vs and porosity. Then, | show that
the location in the crossplots is an indicator of the pore shape. The stiffest pore shape, a
sphere, gives us the upper Hashin-Shtrikman bound, and the softest pore shape, aflat film,
gives us the lower Hashin-Shtrikman bound, or the Reuss bound. Based on this
observation, | explain why a linear Vp-Vs relation, which | use in the workflow to derive
fluid saturation, represents the general trend of sandstone very well.
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Chapter 1

| ntroduction

1.1 Chapter description

As expected by Nur (1997), time-lapse seismic has begun to play an important role in
improving oil recovery, since seismic monitoring provides us the information relating to
the changes in reservoir fluid and pressure during production. The Norwegian North Sea
is an area where time-lapse seismic is commonly used to evaluate producing oil fields.

Several time-lapse seismic studies were published on the North Sea during the last
decade. These include studies of the Oseberg field (Johnstad et al., 1995, Rutledal et al.,
2003), the Magnus field (Watts et a., 1996), the Gullfaks field (Sonneland et al., 1997,
Veire et a., 1998), the Draugen field (Gabriels et al., 1999), the Statfjord field (Al-Najjar

et a., 1999) and the Snorrefield (Smith et al., 2001).



An impressive example of quantitative analysis of time-lapse seismic was recently
demonstrated by Lumley et a. (2003). They determined the axes representing the
changes in pressure and water saturation in the crossplot between the P-wave information
content (Ap) and the S-wave information content (As) to derive the quantitative indicators
of the changing properties.

Johnston et al. (2003) discussed the integration of time-lapse seismic with production
logging data for the quantitative analysis of the seismic. A case study of the method is
summarized in Gouveia et al. (2004) for the Jotun field in the North Sea. According to
their discussions, akey to reducing the artifacts induced during analysis is the coupling of
seismic-inversion analysis of different vintages using acommon initial model.

Despite the efforts described above, the quantitative analysis of time-lapse seismic to
detect the change in fluid saturation remains a challenge, because the match between the
model predictions and the actual seismic dataistypically poor.

In Chapter 2, | discuss velocity anisotropy, one of the issues for improving the
agreement between the model and the actual seismic data. Rowbotham et al. (2003)
showed that the correction of velocity anisotropy significantly improves the result of
seismic inversion, when deviated wells are used as the control data. Indeed, it is common
to use deviated wells as the control data for analyzing offshore seismic data. However,
the anisotropy correction of sonic logs for deviation angles is not a standard process. In
this chapter, | develop a new method to estimate velocity anisotropy parameters from the
well-log information of a single well. To obtain the relationships among velocity,
porosity, and anisotropy parameters, | use a regression method in the velocity-porosity

domain for the compiled database of laboratory measurements. | present the result of an



application of the method to demonstrate the significance of the correction. In the
following chapters, the seismic data analyses are performed based on the anisotropy-
corrected velocities.

In Chapter 3, | explore the effect of random and consistent noise as the source of
miscalculation in deriving Vp, Vs and p from the elastic-impedance (El) analysis of
seismic data. El is the apparent seismic impedance at specific incident angles, which was
derived by Connolly (1998, 1999) and Mukerji (1998). Just as the contrast in acoustic
impedance across a boundary determines normal incidence reflectivity, the contrast in El
determines the reflectivity at the corresponding angle of incidence. When we have Els
for three different stack angles of the same seismic data, it is possible in principle to
back-calculate Vp, Vs, and p. However, in general, the maximum stack angle of seismic
datais limited to be less than 30°, which is not wide enough to obtain stable calculation
results. In this chapter, | develop a method to minimize the calculation error by applying
constraints based on rock-physics bounds. | validate the method by analyzing 3-D
seismic data of an actual oil field; | demonstrate the result of delineating sand-body
distribution by implementing the method.

In Chapter 4, based on the Vp, Vs, p, and shale volume calculated in Chapter 3, |
develop a deterministic workflow to derive fluid saturation from seismic and well-log
data; velocities, density and fluids saturation are calibrated to the time of seismic
acquisition. The workflow is a tower of the carefully stacked building blocks of rock-
physics knowledge: the Voigt-Reuss-Hill average (Hill, 1952) for solid properties; the
Batzle-Wang method (Batzle and Wang, 1992) to determine fluid properties; a method to

consider fluid-saturation scale for seismic analysis (Sengupta et al., 2003); the Gassmann



equation of fluid substitution (Gassmann, 1951); the Vp-Vs relations for brine-saturated
sandstone (Castagna et al., 1993 and Han, 1986); and coupling time-lapse seismic
analysis using common rock-frame properties (Johnston et al., 2003). Then, | apply the
workflow to the time-lapse seismic data of an offshore ail field. In the results, finaly, |
show a clear image of the fluid displacement in the reservoir after 4 years of oil
production and delineate a remaining oil body.

In Chapter 5, | discuss Vp-Vs relations of reservoir rocks. The most widely used
empirical Vp-Vs relations have been published by Castagna et al. (1993), for rock types
including sandstone, mudrock, limestone and dolomite. Xu and White (1995)
demonstrated a method to determine the Vp-Vs relation of shaly sandstone by mixing two
inclusion models with different aspect ratios, which represent the sandstone and shale
portions. However, there is no systematic explanation of why a linear regression works
well in most cases. | adopt the Hashin-Shtrikman bounds (Hashin and Shtrikman, 1963)
to explore Vp-Vs relations for rock-fluid mixtures. Then, | compare the Vp-Vs relations
calculated by the stiff-sand and soft-sand sand models by Dvorkin and Nur (1996), a
model with tubular pores by Mavko (1980) and a self-consistent inclusion model of
skewed-spheroid pores by Berryman (1995). This chapter explains why | use a smple

Vp-Vs relation in the workflow discussed in Chapter 4.

1.2 Geologic outline of thefield for a case study

The target field is situated in a major late Jurassic to early Cretaceous structural high
at the western margin of a north Viking Graben Permo-Triassic rift in the North Sea.

There is a series of large westward- to northwestward-tilted fault blocks. The field has



reservoirs in the Triassic “L” Formation and Triassic to Early-Jurassic “S’ Formation.
The structure contains a series of magjor faults, which follow a NNE-SSW structural
trend. Most of these faults exhibit dip slip to the east.

The reservoir section was deposited as post-rift fill sediments. The main depositional
environment of the target horizon, the “S’ Formation, is a braided-river fluvial system
with some interactions of a meandering-river system. The top of the “S’ Formation is
overlain by marine shale. The “S’ Formation is divided into 5 zones: “S1” to “S5”,
numbered from the top. The upper zones show coarser grains in sandstone and have
significantly better reservoir properties than the lower parts. The “S’ Formation
demonstrates the repeated cycles of upward-fining and blocky sandstone sequences in the
well logs. Especially for the upper part, the sequences are interpreted as the sheet sands
of low-sinuosity braided-stream complexes.

Therefore, to understand the fluid behavior in the subsurface, it is important to map
the distribution of the sand bodies with good reservoir properties and to detect fluid
saturation using the seismic data.

The production of this field is undertaken by applying water-alternating-gas injection
scheme to enhance oil production and maintain the reservoir pressure.

The database for the case study includes the following:

1. Time-lapse seismic: 3-D coverage, vintages 1997 and 2001, with 3 angle stacks

(9°, 15°, 23.5°) for each vintage, matching filter applied;

2. Weéll logs of 4 wells (1 vertical well and 3 deviated wells (deviation around 60° in

the reservoir) ): gammaray, density, neutron, resistivity, dipole sonic, caliper,

deviation angle;



3. Wédll-log interpretation: CPI log including porosity, fluid saturation, shale volume,
and permeability in some wells;

4. Weéll-completion report: geologic description, horizon tops, and well trgjectory;

5. Coredata: lithology description, microscope image, and core-velocity
measurements,

6. Geologic model: classification of reservoir units and fault distribution;

7. Reservoir-simulator output: reservoir-flow units and time-lapse outputs of the
history-matched data (porosity, permeability, pressure, fluid saturation) at well
locations.

Figure 1.1 shows an image of the case-study field. The three wellsin red are deviated
wells with maximum deviation angles exceeding 70°; Well A is a vertical well located
very close to Well H. The surface is the seismic horizon near the top “S’ Formation,
which dips to the northwest—to the left in Figure 1.1—with interrupting normal faults.

The color code is the interpreted two-way travel time in milliseconds from sea level.



000 Lo

-1200

-1400

-1600

-1800

-2000

-2200

-2400

2600 | o

-2800

3000 T

6.815

6.814

Figure 1.1: The oil field for a case study. The three red lines illustrate deviated wellsin
the study area; the green line represents a vertical well inthe area. The surface isthe
seismic horizon corresponding to a near top target reservoir. The color code is the
two-way travel time from the sea level to the horizon. The horizon dips northwest,
to the left in this figure, with interruption of normal faults.

-2300

2360

2400

2450

2300

2550

-2600



REFERENCES

Al-Ngjjar, N., Doyen, P., Brevik, I., Kvamme, L. and Psaila, D., 1999, Statfjord field --
time-lapse seismic interpretation using a 4-D earth model. Expanded Abstracts, 69th
Annual International Meeting, Society of Exploration Geophysicists, 1620-1623.

Batzle, M., and Wang, Z., 1992, Seismic properties of pore fluids, Geophysics, 57, 1396-
1408.

Berryman, J.G., 1995, Mixture theories for rock properties, in “Handbook of Physical
Constants”, T.J. Ahrens, eds. American Geophysical Union, Washington D.C., 205-
228.

Castagna, J., Batzle, M. and Kan, T., 1993, Rock Physics — The link between rock
properties and AV O response, in Offset Dependent Reflectivity — Theory and Practice
of AVO Analysis, J.P. Castagna and M. Backus, eds. Investigations in Geophysics,
No. 8, Society of Exploration Geophysicists, Tulsa, Oklahoma, 135-171.

Connolly, P., 1998, Cadlibration and inversion of non-zero offset seismic. Expanded
Abstracts, 68th Annual International Meeting, Society of Exploration Geophysicists,
182-184.

Connolly, P., 1999, Elastic impedance. The Leading Edge, 18, 438-452.

Dvorkin, J. and Nur, A., 1996, Elasticity of high-porosity sandstones:. Theory for two
North Sea datasets. Geophysics, 61, 1363-1370.

Gabriels, P. W., Horvel, N. A., Koster, JK., Onstein, A., Geo, A. and Staples, R., 1999,
Time Lapse Seismic Monitoring of the Draugen Field. Expanded Abstracts, 69th

Annual International Meeting, Society of Exploration Geophysicists, 2035-2037.



Gassmann, F., 1951, Uber die elastizitat poroser medien. Verteljahrsschrift der
Naturforschenden Gesellschaft in Zurich, 96, 1-23.

Gouveia, W. P., Johnston, D. H. and Solberg, A., 2004, Remarks on the estimation of
time-lapse elastic properties: the case study for the Jotun field, Norway, Expanded
Abstracts, 74th Annual International Meeting, Society of Exploration Geophysicists,
2212-2215

Han, D-H., 1986, Effects of Porosity and Clay Content on Acoustic Properties of
Sandstones and Unconsolidated Sediments. Ph.D. dissertation, Stanford University.

Hashin, Z. and Shtrikman, S., 1963, A variational approach to the theory of elastic
behavior of multiphase materials, Journal of Mechanics and Physics Solids, 11, 127-
140.

Hill, R., 1952, The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. London
Ser. A, 65, 349-354.

Johnstad, S., Symour, R., and Smith, P., 1995, Seismic reservoir monitoring over the
Oseberg field during the period 1989-1992. First Break, 13, May, 169-183.

Johnston, D. H., Gouveia, W. P., Solberg, A. and Lauritzen, M., 2003, Integration of
time-lapse seismic and production logging data: Jotun Field, Norway, Expanded
Abstracts, 73rd Annual International Meeting, Society of Exploration Geophysicists,
1346-1349.

Lumley, D., Meadows, M., Cole, S. and Adams, D., 2003, Estimation of reservoir
pressure and saturations by crossplot inversion of 4D seismic attributes. 73rd Annual

International Meeting, Society of Exploration Geophysicists, 1513-1516.



Mavko, G., 1980, Velocity and attenuation in partially molten rocks, Journal of
Geophysical Research, 85, 5173-5189.

Mukerji, T., Jarstad, A., Mavko, G., and Granli, J., 1998, Near and far offset impedances:
Seismic attributes for identifying lithofacies and pore fluids. Geophysical Research
Letter, 25, 4557-4560.

Nur, A., 1997, Rock physics and 4-D seismic for improved oil recovery, Expanded
Abstracts, 67th Annual International Meeting, Society of Exploration Geophysicists,
1009-1011.

Rowbotham, P., Marion, D., Eden, R., Williamson, P., Lamy, P. and Swaby, P., 2003,
The implication of anisotropy for seismic impedance inversion. First Break, 21, 53-
S7.

Rutledal, H., Helgesen, J. and Buran, H., 2003, 4D elastic inversion helps locate in-fill
wells at Oseberg field. First Break, 21, 39-43.

Sengupta, M., Mavko, G. and Mukerji, T., 2003, Quantifying subresolution saturation
scales from time-lapse seismic data: A reservoir monitoring case study. Geophysics,
68, 803-814.

Smith, P., Berg, J., Eidsvig, S., Magnus, |. and Verhelst, F., 2001, 4-D Seismic in a
complex fluvial reservoir: The Snorre feasibility study. The Leading Edge, 20, 270-
277.

Sonneland, L., Veire, H. H., Raymond, B., Signer, C., Pedersen, L., Ryan, S., and Sayers,
C., 1997, Seismic reservoir monitoring on Gullfaks. The Leading Edge, 16, 1247-

1252.

10



Veire, H. H., Reymond, S. B., Signer, C., Tennebo, P. O. and Sonneland, L., 1998,
Estimation of reservoir fluid volume through 4-D seismic analysis on Gullfaks.
Expanded Abstracts, 68th Annual. International Meeting: Society of Exploration
Geophysicists, 27-30

Watts, G., Jizba, D., Gawith, D., and Gutteridge, P., 1996, Reservoir monitoring of the
Magnus field through 4-D time-lapse seismic anaysis. Petroleum Geoscience, 2, 361-

372.

Xu, S. and White, R.E., 1995, A new velocity model for clay-sand mixtures. Geophysical

Prospecting, 43, 91-118.

11



Chapter 2

Velocity anisotropy estimation for
brine-satur ated sandstone and shale

2.1 Abstract

Velocity anisotropy is one of the important parameters to consider in seismic
analyses. Especialy for deviated-wells in offshore fields, we must correct for velocity
anisotropy effects to obtain realistic sonic-log responses that are equivalent to seismic
data for small incident angles. However, there is no appropriate method for anisotropy
correction using well-log information from a single well, which is often the only
information available. 1 compiled experimental velocity anisotropy data from cores in
the literatures to explore the empirical relationships between anisotropy parameters and
general well-log information. Eventually, | found that there is a clear trend of velocity

anisotropy in the crossplot domain between velocity and porosity. Consequently, |
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developed a method to estimate Thomsen's (1986) anisotropy parameters £ and y using a
regression in that domain. The advantage of this method is that one can estimate ¢ and »
from well-log curves of Vp and total porosity. In this chapter, | first present the result of
an application of the method to demonstrate the significance of the correction. Then, |
show how | developed the method. In addition, | discuss an alternative approach
incorporating a neural network, and compare my method with the method proposed by Li

(2002).

2.2 Introduction

Rowbotham et al. (2003) showed that the correction of velocity anisotropy
significantly improves the result of seismic inversion, when deviated wells are used as the
control data. Indeed, it is common to use deviated wells as the control data for analyzing
offshore seismic data. However, the anisotropy correction of sonic-logs for deviation
angles is not a standard process. Therefore, in the real world, well control is often
distorted when the correction for sonic-logs is not applied, especially for geologic
sequences with many interbedded shaly layers, where we expect larger anisotropy effects.
Hornby et a. (2003) proposed a method to estimate anisotropy parameters from the sonic
logs of differently deviated-wells, including a vertical well. This method, as well as the
simplified version of this method in Rowbotham et al. (2003), is based on the assumption
that the shale layer is perfectly homogeneous in the area where the wells are deviated, so
the velocity variation depends only on the deviation angles of the wells. Then, the

optimum anisotropy parameters are determined to obtain a sonic-log velocity consistent
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with a nearby vertical well. Obvioudly, this method is not applicable for laterally
heterogeneous lithofacies sequences, such as fluvia deposits. Furthermore, we may not
have a nearby vertica well in some cases. Therefore, an aternative method for
estimating anisotropy parameters is necessary to correct the sonic log in heterogeneous
geologic sequences and/or to perform anisotropy correction with single-well information.
| developed a new method to estimate velocity anisotropy parameters from the well-log

information of asingle well.

2.3 Application result

Before explaining the analysis procedure, | preview the results. Figure 2.1 shows the
result of my correction for an example well. In the top left chart, the circle markers are
sample points from a deviated well (deviation anglesin areservoir are 57°-62°) before an
anisotropy correction, color-coded by shale volume. The bottom left chart shows the
sample points from the same deviated well, but after the anisotropy correction using my
method. The chart on the top right exhibits data points from a nearby vertical well, which
show the ideal data distribution that would be expected after an anisotropy correction.
The arrows in the charts indicate lithology trends of increasing shaliness, which are
obtained from the chart of the nearby vertical well, then overlaid on the charts for the
deviated well. | emphasize that the shale trend (data points along the blue arrow in the
figure) becomes concordant between the deviated well and the vertical well after the new
correction method is applied. Figure 2.2 shows well logs from the deviated well,

including estimated Thomsen’'s (1986) epsilon and sonic logs both before and after the
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anisotropy correction. This correction magnifies the velocity contrast between the shale
and sand; as a result, the seismic modeling of the data is modified as well after the
correction. | calculated the AVO responses at an interface between shale and reservoir
sand, as presented in Figure 2.3. In this figure, two significant effects of the anisotropy
correction are clear. First, the magnitude of zero offset reflectivity after the correction is

less than half of that before the correction.
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Figure 2.1: An application result of my anisotropy correction method. The top left chart
exhibits data from a deviated-well before the anisotropy correction, whereas the
bottom left chart exhibits the deviated-well data after the correction. The top right
chart shows data from a nearby vertica well, an ideal distribution after the
correction. Note that the shale trend, along the fixed blue arrow in this figure,
becomes concordant between the deviated-well and the vertica well after the
correction. The well tragjectories of the two wells are shown in the bottom right
panel.
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Second, the AV O response before the correction is almost flat, but after the correction the
response shows decreasing reflectivity with increasing incident angle in this light ail
reservoir case. This example shows that using velocity data without an anisotropy

correction may induce significant errorsin seismic analyses.
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Figure 2.2:  Well logs of a deviated-well. The fifth column from the left shows the
estimated epsilon by my method. The blue dashed trace in the Vp column is a sonic
log before the correction; the red trace in the same column is the sonic log after the
anisotropy correction.
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Figure 2.3: The AVO modeling result of an interface between shale and oil sandstone.
The blue curve corresponds to the reflectivity response derived from a sonic-log
before the anisotropy correction. The red curve indicates the reflectivity response
calculated from the sonic-log after the anisotropy correction. Note (1) the difference
between the zero incident angle reflectivities and (2) the different trends of
reflectivities as the incident angle increases. | used the anisotropic AV O equation in
Thomsen (2002). The symbol ¢ is fractional porosity. Sw is fractional water
saturation and oil saturation is 1-Sw.

2.4 Estimation method of velocity anisotropy

| compiled laboratory measurements by Lo et a. (1986), Vernik & Liu (1997), and
Wang (2002). Assuming that most subsurface rocks are transversely isotropic with
vertical symmetry axis, | examined the compiled data to explore relationships between
common well-log information (Vp, Vs, density, porosity, effective pressure) and
Thomsen's anisotropy parameters (e, 7, 0).

After generating a series of crossplots, | found a clear trend of ¢ in the domain of

normal incident Vp (=Vp(0)) and bulk porosity as shown in Figure 2.4. To eliminate
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effects of saturation, | extracted only the measurements for brine-saturated sandstone and
shale from the database. | scrutinized the extracted dataset to obtain an appropriate
regression method to estimate & from Vp(0) and porosity ¢. In this investigation,
modified Reuss average curves, as a function of arbitrary P-wave moduli and porosity,
are found to yield a good functional form for iso-e contours in the crossplot domain
between V’p(0) and porosity ¢. The Reuss bound is the isostress average of two materials,
so that the mental image of the Reuss scheme is alternating layers of two materials. This
fact suggests that as Vp(0) for the fixed porosity approaches the minimum velocity on

the Reuss bound, a rock tends to have more horizontally layered internal texture; for that

reason, the rock demonstrates larger velocity anisotropy.
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Figure 2.4: The crossplot of Vp(0) vs. porosity for the compiled database of laboratory
experiments. The database includes both dry samples and brine-saturated samples.
Left: the data points are color-coded by Thomsen’s anisotropy parameter . Right:
the data points are color-coded by lithology. The red curve is the upper Hashin-
Shtrikman bound of a quartz-water mixture with a critical porosity of 0.4. The blue
curveis the Reuss bound of a clay-water mixture.

The equation for modified Reuss curves is given in Equation 2.1, where M; and M,

are two arbitrary P-wave moduli of the end points ¢=0 and ¢=1, respectively. Taking ¢
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as the material fraction of M., to simplify the calculation, | set densities 2.65 g/cm® for
M;; 1.00 glem® for M,. Choosing ¢ as the fraction of M, might seem counterintuitive.
However, this empirical exercise leads to a useful description of the anisotropic data.
Here, P-wave modulus M is the product of the density and the square of the P-wave
velocity for each material. Then the P-wave velocity of the mixture is expressed as

below:

Q) =[(1— @)/ My+ ¢pI Mp) ™/ ($+265(1—¢))]" (2.1)

To optimize the fitting of iso-& contours to the data points for small € values, where
we have sufficient data coverage, | calculate iso-¢ contours using least squares. Next, |
extrapolate the resultant contours for larger ¢ values. The obtained iso-£ contours are
almost parallel to the Reuss bound, as shown in Figure 2.5. For this process, | use only
the laboratory data with effective pressure greater than 30MPa, since the data with lower
effective pressure is highly scattered.

In addition, we find the relationship between M; and M, based on their values derived
during the generation of iso-&contours. Figure 2.6 shows the data points and the

regression curve given by

My = -2.3095 M>? + 35.525 M, —37.403 . (2.2)
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Figure 2.5: Iso-¢ contours and the data points of brine-saturated sandstone and shale.
The contours correspond to modified Reuss curves based on Equation 2.1 with two
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Figure 2.6: An empirically derived regression curve between M; and M,. The red points

are plotted according to the result of fitting iso-& contours to the database.
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Here, | solve Equations (2.1) and (2.2) ssmultaneously to determine AM; and M, from

Vp(0) and ¢. First | rearrange Equation (2.1) to obtain

MiMol(Ma(1-§)+ M) = 2.65Vp(0)*-1.65¢Vp(0)* = 4 . (2.3)

Now, | express the relationship between M; and M, using A4:

M1=(4-A9)Mal (M2-A ). (2.4)

| plug this relationship into Equation (2) to obtain the following equation:

-2.3095M,°+(35.525+2.30954 ) M- (37.403+35.5254 - A $+ A)M +37.4034 4=0. (2.5)

Next, | rearrange this equation in the form of x*+ax*+bx+c=0 and solve it as shown below,

where p, ¢, m, and n are intermediate products.

a=(35.525+2.30954 ¢)/(-2.3095) (2.6)
b=-(37.403+35.5254 A p+A4)/(-2.3095)

¢=(37.4034 4)/(-2.3095)

p=b-(a*I3)

q=2(a°I27)-(ab)/3+c

m=(-ql2+sqri(q}4-p*27))

n=-1(abs(-ql2-sqri(q*4-p*27)))">
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Vp(0) (km/sec)

Mo=-(m+n)-al3

Finally, | use regressions between M, and sto determine the ¢ value, assuming the
minimum &is zero. These regressions are derived from the compiled database of brine-

saturated sandstone and shale aswell. Figure 2.9 exhibits these regressions for ¢ and .

€ =-1.0428M>+3.621, M><3.2048, (2.7
=-0.0809M,+0.5383, 3.2048=<M,<5.9924,
=-0.0152M,+0.1446, M>>=5.9924.

Using Equations 2.3, 2.6 and 2.7, now we can determine ¢ from Vp(0) and ¢.
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Figure 2.7: The estimation result of the anisotropy parameter ¢ in the Vp(0) vs. porosity
domain for brine-saturated sand and shale. Right: actual ¢ vs. estimated ¢. The red
lineisthe 1:1 trend.
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The left chart of Figure 2.7 presents the calculated ¢ value for Vp(0), ranging from 1.5
to 6 km/sec, and fractional porosity, between 0 and 0.4; the chart on the right exhibits the
correlation between the actual € and the estimated value. In the right-hand side chart, the
markers are color-coded by the effective pressure of their laboratory measurements in
MPa. Note that three to four linearly aligned markers with changing color in the chart are
data measured on the same core sample but in different pressure conditions. These data
indicate that the influence of effective pressure is more or less paralel to the 1:1 line in
the chart. This shows that the pressure effect on ¢ is independent of this estimation
method.

| apply the same approach to estimate Thomsen’s anisotropy parameter y from Vs(0)
and porosity as displayed in Figure 2.8. | derive the equation below from a regression

for iso-y contours:

A= 2.65V5(0)*1.65¢Vs(0)* (2.8)

-5.6031M,°+(24.278+5.60314 ¢) M,*+(18.778-24.2784 ¢+A ¢-A) M»-18.77844=0. (2.9)

Then | solve the equation for AM,, where p, g, m, and n are intermediate products.

a=(24.278+5.60314 ¢)/(-5.6031), (2.10)
h=(18.778-24.2784 ¢+A ¢ A)/(-5.6031),
¢=(-18.7784 4)/(-5.6031),

p=b-(a*l3),
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Vs(0) (km/sec)

q=2(a®127)-(ab)/3+c,
m=(-gl2+sqri(¢*4-p° 27)%3,
n=-1(abs(-q/2-sqri(q*l4-p*| 27)*3,

Mo=-(m+n)-al3.

| find regressions between M, and yto determine the y value, assuming the minimum

yiszero.
7= -1.3598M,+1.3284, M,<0.8549, (2.11)
=-0.1286M1,+0.2759, 0.8549=<M,<1.8711,
=-0.0316A1,+0.0944, M>>=1.8711.
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Figure 2.8: Estimation result of the anisotropy parameter y in the Vs(0) vs. porosity
domain for brine-saturated sand and shale. Right: actual y vs. the estimated y. The
red lineisthe 1:1 trend.
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An alternative way to determine yis direct regression from ¢. Wang (2002) provided

alinear regression for his whole dataset as shown below:

y=-0.01049+0.9560¢. (2.12)

| derive a dlightly different regression from the compiled dataset for brine-saturated

sandstone and shale as follows:

=-0.0282+1.2006¢. (2.13)

When sonic-log velocities are very low, around the lowest limit of the distribution of
compiled data in Figure 2.4, it is better to use a direct regression to estimate y, since the
compiled dataset does not contain many data points in the low-velocity range; the data
are broadly scattered in that range. Figure 2.9 presents regressions between M, and ¢ on
the left, as well as M, and y on the right. In this figure, sandstone is color-coded in
yellow, siliceous shalein red, and shale in brown.

At this point, we have Vp(0), Vs(0), ¢ and y, so that we can calculate the four
stiffness constants of a Tl medium, C11, Cs3, Ca4, and Ces, by adding density information.
Furthermore, to determine Ci3, | adopt a linear regression between Cy2 and Ci3 in the
database for brine-saturated sandstone and shale. Given this regression, we compute 6 as

follows:

C3=Vp(0)p, (2.14)
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Cu=Vs(0)%p,
C11=26C33+ (33,
Ce6=2yCast+Caa,
C12=C11-2Ces,
(13=0.9749C1,-2.3471,

{ (C1a+Caa)*~(Ca3-Caa)} 12C33(Caa-Can).

However, the result shows the highly scattered distribution of das displayed in Figure

2.10. The large estimation errors may induce significant miscalculation of velocity

during anisotropy correction when the estimated Jis used.
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Figure 2.9: Regressions between epsilon and the M, calculated for epsilon; also
between gamma and the M, calculated for gamma. The color indicates lithology:
yellow represents sand, red is siliceous shale, and brown is shale. The blue lines
indicate the employed regression lines to generate Figures 2.7 and 2.8.
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Figure 2.10: The estimation result of the anisotropy parameter & for brine-saturated sand
and shale. Thered lineisthe 1:1 trend.

To clarify the contribution of the 6 term, | compare the results of the velocity
anisotropy correction for Vp with and without the 6 term. First, | determine the angle
velocities for the dataset using Thomsen's exact equation. The first column of Figure
2.11 shows the difference between the actua Vp at the given propagation angle and the
Vp(0). The horizontal axis of the histograms represents velocity difference in km/sec. At
higher angles, actual Vp is adways higher than Vp(0). Nevertheless, the velocity
difference depends on the degree of velocity anisotropy of each rock sample. The second
column from the left corresponds to the difference between the actual ’p and the result of
the anisotropy correction by Thomsen's exact equation, using my estimated ¢and 6.
Most data are corrected into appropriate ranges, yet we observe slight miscorrection due
to the estimation error of §value for smaller angles. The third and fourth column shows

the differences between the actual Vp and the corrected results using Thomsen's

27



approximation. For the third column, | adopt the estimated ¢and ¢ in the computation,

whereas | omit the ¢term of the equation for the fourth column.
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Figure 2.11: Histograms of velocity differences. From the left, first column: actual
velocity at the angle, minus Vp(0); second column: actua velocity at the angle,
minus estimated velocity by Thomsen's exact equation with estimated ¢ and 6, third
column: actual velocity minus estimated velocity by Thomsen's approximation
equation with estimated gand & fourth column: actual velocity minus estimated
velocity by Thomsen’s approximation equation without the §term.

Note that even though | omit the 6 term of Thomsen’s approximation, the effect of the
anisotropy correction remains almost the same. Figure 2.12 shows the quantitative
comparison of the histograms of Vp difference in terms of the mean and standard

deviation of the distribution.
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Figure 2.12: Quantitative comparison of the histograms in Figure 2.11. The left chart
exhibits the mean of the Vp difference and the right chart shows standard deviation
of the I’p difference. The blue dots correspond to the first column from the left in
Figure 2.11, black dots represent the second column, green dots represent the third
column, and the red dots indicate the data from the fourth column.

From these investigations, | conclude that the ssmple equation below corrects velocity

anisotropy for Vp sufficiently well:
Vp(0) = Vp(O)[1+esin’d). (2.15)
For S-waves, in case of well deviation exceeding around 50°, | assume the logging
device measures Vsyorizonar, Which is the fast Vs in this angle range. Then, | employ
Thomsen'’ s approximation equation for the correction of Vsyorizonara 8 fOllOws:
Vs(6) = Vs(0)[1+)sind]. (2.16)
Since | define a method for calculating anisotropy parameters from velocity and
porosity asillustrated in Figures 2.7 and 2.8, we can derive a relationship among Vp(6),
porosity, and &; or arelationship among Vs(6), porosity, and y, for any arbitrary deviation

angles. For an example of the P-wave case, | convert the vertical axis of the left chart in
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Figure 2.7 from Vp(0) to Vp(6), based on a well deviation angle 6, using the Equation
(2.15). Then, | determine & corresponding to the sonic-log velocity, Vp(6), and porosity
from a well-log analysis. In this way, | can determine the anisotropy parameters and
calculate the normal incident velocities from the well-log information of any single well,
as demonstrated in Figure 2.2. | demonstrated the application of my method in the first
section. This method is empirical, so we may need to calibrate the trends when the
laboratory measurements of velocities, porosity, and anisotropy parameters are available
in atarget area. However, the method is robust and suitable for any practical use. One
important point of this method is that well-log velocities should be fluid-substituted to a

brine-saturated condition before applying the anisotropy correction.

2.5 Alternative methods

Besides the approximation method discussed above, | examined severa alternative
methods, including different regression curves in the Vp(0)-porosity domain, utilizing
density instead of porosity, and a neura-network approach. Figure 2.13 exhibits the
result from a neural network: it is trained with Vp and porosity from my database. The
correlation between actual € and the estimated ¢ exhibits a better match than my method,
as shown in the right chart of Figure 2.13. However, when we simulate the distribution
of € in Vp(0)—porosity domain, we observe an irregular distribution of &, due to an over-
fitting by the neural network, as shown in the left chart of Figure 2.13. This roughness of
the distribution causes unstable calculations of ¢in the application of this neural network

to actual data.
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Figure 2.13: Estimation result of the anisotropy parameter & by a neura network. Right:
Actua evs. the estimated . Thered lineisthe 1:1 trend.

Li (2002) proposed a method to estimate the velocity anisotropy & from Vp(0) and

clay volume in the equation below:

&= (O 7 Vclay( Vp(O) - prater))/ ( quuarlz' VP water'z- 29 Vclay) . (2 17)

| examine this equation for well data in comparison with my method. Figure 2.14
demonstrates the result. The resultant range of ¢by Li’s method often extends to high
values. This fact suggests that the equation by Li needs scale adjustment. Furthermore,
higher-velocity samples correspond to higher ¢ at the same clay volume in his method.
This is because he used Vp(0) in the numerator in his equation. The resultant trend of

gin the Vp(0)-porosity domain does not agree with observations from the experimental
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dataset. In the laboratory measurements, we recognized that lower Vp(0) corresponds to

higher ¢in the same porosity range.
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Figure 2.14: Comparison of estimation results of the anisotropy parameter ¢in the Vp(0)-
porosity domain. Left: the proposed method in this paper. Right: the method by Li
(2002). The upper curve is the upper Hashin-Shtrikman bound of a quartz-water
mixture with acritical porosity of 0.4. The lower curve is the Reuss bound of a clay-

water mixture.

2.6 Conclusions

| developed estimation methods for velocity anisotropy parameters ¢ and y from well-
log information of a single well. To obtain the relationship between velocity, porosity,
and anisotropy parameters, | used a regression method in the velocity-porosity domain
for the compiled database of laboratory measurements, which consists of only brine-
saturated sandstone and shale. The proposed methods estimate ¢ and y within reasonable
ranges, but | could not estimate & properly. | examined Thomsen's approximation

equation for Vp(6) without the oterm and validated it for computing £and Vp(0) from
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Vp(6), porosity, and well-deviation angle from well logs. | showed an application result,
demonstrating its impact on AVO modeling. The new method is most suitable when the
deviation angle exceed about 50°, where Vp(6) depends strongly on ¢ but not &; in
addition, Vs(6) corresponds to horizontal Vs.

It is inappropriate to extend this method to very low velocity ranges, such as below
the Reuss bound of a clay-water mixture. The compiled dataset does not include enough
control pointsin such low velocity ranges.

In the following chapters, | apply this correction method for velocity anisotropy to all
the control wells in a case study dataset. Therefore, the seismic data analyses in the

following chapters are based on the anisotropy-corrected velocities.
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Chapter 3

Elastic-impedance analysis
constrained by rock-physics bounds

3.1 Abstract

The reflection coefficient of seismic datais a function of the impedance contrast at a
subsurface interface. Hence, by applying seismic inversion, | can derive rock impedance
from seismic data. Impedance is more useful for reservoir characterization than interface
responses such as seismic amplitude, since it is an interval property. However, if it is
possible to decompose the impedance into two fundamental properties, namely velocities
and density, | can utilize the currently available rock-physics applications both to
determine the rock trend in the Vp-p plane, and to derive quantitative rock properties,
such as shale volume. In this chapter, | present a method of impedance decomposition

using three elastic impedance data derived from the seismic inversion of angle stacks. |
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discuss the effect of noise on the anaysis as the most important reason that
decomposition is difficult. Then, | show an innovative method incorporating rock-
physics bounds as constraints for the analysis. The method is applied to an actual dataset

from an offshore oil field; | demonstrate the result of analysis for sand-body detection.

3.2 Introduction

Elastic impedance (El) is the apparent seismic impedance at specific incident angles,
which was derived by Connolly (1998, 1999) and Mukerji et al. (1998). This elastic
impedance is a function of P-wave velocity (Vp), S-wave velocity (Vs), density (o), and
the incident angle (6), based on the approximations of Zoeppritz's equations (1919) by
Aki and Richards (1980), and Shuey (1985). Therefore, when we have elastic
impedances for three different stack angles of the same seismic data, it is possible in
principle to back-calculate Vp, Vs, and p from the three elastic impedances. Very often,
the maximum stack angle of seismic datais limited to be less than 30°, which is not wide
enough to obtain stable calculation results. Hence, except when we have long-offset
seismic data with the offset angles beyond around 60°, it is generally impractical to
calculate Vp, Vs, and p separately from the seismic data.

Instead of calculating Vp, Vs, and p directly from elastic impedances, desired
properties are most often estimated by establishing empirical relationships between the
impedance and the rock properties at well locations using well-log data. Whitcomb et al.
(2002) introduced extended elastic impedance (EEI) in a modified form of elastic

impedance using tany as an aternative for sin’@ of the incident angle. Then, they
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extended the linear trend of the impedance change as a function of sin’d of the incident
angle, from negative infinity at y=-rn/2 to positive infinity at y=n/2, in place of alimited
extension of the horizontal axis from 0 at =0 to 1 at é=n/2. In the same paper they
demonstrated the lithology impedance and the fluid impedance for specific y values.
However, all indicators still represent impedance. With this approach one cannot take
advantage of well-known rock physics trends in the velocity-density or Vp-Vs domains.

In this chapter, | explore the effect of random and offset-consistent noise as the
source of miscalculation for deriving Vp, Vs and p. Next, | develop a method to stabilize
and improve the calculation, by applying constraints based on rock-physics bounds. |
validate the method by analyzing 3-D seismic data of an actual oil field; | demonstrate

the result of delineating sand-body distribution by implementing the method.

3.3 Noise effect in elastic-impedance analysis

Elastic impedance is expressed in the formula bel ow:
El(0)=Vp°Vs®p°, (3.1)
where

a=1+tan’4,
b=-8Ksin?é,
c=1-4Ksin%g,
K =(\Vs/vp).
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One way to think of elastic impedance is that contrast of EI(6) at a layer boundary
determines the reflectivity at that angle, analogous to the way that normal incidence
reflectivity is determined by the contrast of acoustic impedance.

Therefore, when | have three different elastic impedances corresponding to three
seismic stack angles of &, 6, and &, the relation can be expressed in a matrix form:

INEI(#,)) (1+tan®6, -8Ksin?@, 1-4Ksin?4, \InVp

INEI(G,)|=|1+tan®g, —-8Ksin?6, 1-4Ksin’?@, | InVs |. (3.2)
InEI,)) (1+tan?6, -8Ksin’H, 1-4Ksin?6, | Inp

Equation 3.2 is ageneral matrix form to relate three unknowns (InVp, InVs, p) to three
measurements (INEl(&,), InEI(&), INEI(&)), when all angles and K are known.
Consequently, when three Els are available from elastic impedance inversions of seismic
data, it is possible in principle to calculate Vp, Vs, and p by multiplying the inverse
matrix of the first matrix on the right-hand side in Equation 3.2 to both sides of the
equation from the left; | obtain Equation 3.3:

1+tan?d, -8Ksin?6, 1-4Ksin26,) (InEI®,)) (InVp

1+tan?6, -8Ksin?@d, 1-4Ksin?6, | |InEI(G,)|=]InVs |. (3.3)
1+tan’0, -8Ksin?0, 1-4Ksin20, ) |InEl(9,)] |Inp

The practical problem isthat the matrix is poorly conditioned unless ,<<6,<<&.
As an example, | use a portion of the actual well-log datato calculate the exact Els of
three different angles ( 9°, 15° and 23.5°) according to the stack angles of the seismic

data of the target oil field.
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Figure 3.1: The result of inverse calculation for Vp and p from three Els. The left three
columns show exact Els in blue and data with 1% random noise added in the dashed
red line. The 4" and 6™ columns from the |eft are actual Vp and p. The 5" and 7"
columns are comparisons between the actual data in blue and the back-calculated
result in the dashed red line for Vp and p respectively. The right-most column
exhibits acoustic impedance in the same color scheme.

After adding 1% random noise for all Els, but different noise profiles for each El, |
back-calculate Vp, Vs, and p from the Els by the inverse matrix method of Equation 3.3,
Figure 3.1 shows the result. In this figure the three columns on the left show Els of the
near, mid and far angles in blue for the original data, and as a dashed red line for the 1%
noise-added data. Since the noise level is so small, we do not see a distinct separation
between the two data sets. The 4™ and 6™ columns are the actual logs of Vp and p,
respectively. The 5™ and 7" columns present comparisons between the actual logs in
blue and the inverse calculation results with noise-added data in dashed-red lines. Note
that the horizontal scale islogarithmic in these comparisons. The results demonstrate that
the miscalculations are very high, more than 0.1 to 10 times of the original data. Since

the calculations were performed on the three Els, the errors in Vp and p are anti-
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correlated; where we calculate very high Vp, we have very low p, and vice versa. The
product of Vp and p, acoustic impedance, exhibits only small errors, as shown in the
right- hand column of the same figure.

This simple calculation illustrates that it is extremely difficult to reliably derive Vp,
Vs and p from Els spanning a narrow range of angles. Even 1% random noise may
totally invalidate the calculation result. This problem is the main reason why researchers
prefer to use impedance data directly to estimate rock properties rather than decomposing
the impedance into velocity and density.

Next, let us change the noise scheme to offset-consistent noise. In other words, | add
exactly the same noise to each of three Els at the same depth point. Figure 3.2
summarizes the calculation result of this scheme with a noise level of 10% of the original
data. The column allocation and the color code are the same as shown in Figure 3.1,
except that | display the comparison of Vs in the right-most column instead of the
acoustic impedance. Since the noise level is 10 times higher than in the previous case,
the separation between the original El in blue and the noise-added EIl in red is
distinguishable in the left three columns. However, the most remarkable difference from
the previous result is in comparisons of Vp, Vs and p. | observe an amost perfect match
for Vp and Vs, with only small miscalculation for p. This result suggests that the inverse
calculation is not sensitive to noise consistent across the Els. Figure 3.3 demonstrates the
calculation result for a higher level of offset-consistent noise. In this case, the noise level
is 25% of the original El data. Even at this high noise level, the calculated Vp does not

exhibit any error, whereas | observe the highest errorsin p and small errorsin Vs.
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Figure 3.2: The result of the inverse calculation for Vp, Vs and p from three Els with 10%
offset-consistent noise. The column allocation and color code are the same as in
Figure 3.1. The right-most column exhibits the Vs comparison. Note the separation
between the actual data in blue and the calculation result in red is minimal in Vp and
thelargestin p.
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Figure 3.3: The result of inverse calculation for Vp, Vs and p from three Els with 25%
offset-consistent noise. The column allocation and color code are the same as in
Figure 3.1. Note that despite the high noise level, Vp does not exhibit any estimation
errors, whereas | observe the highest error in p and much smaller miscalculations in
Vs.

42



3.4 Theoretical assessment of noise effect

| investigated the inverse matrix calculation in general form to obtain a clear
explanation for the observations discussed in the previous section. First, | set K=0.25,
which is equivalent to a Vp/Vs ratio equal to 2, to simplify the matrix form, which results
in the following:
InVp) (1fcos?d, -2sin?d, cos?d,) (InEI(H,)

InVs |=|1/cos’6, -2sin’6, cos’H, | |InEIG,)|. (3.4)
Inp ) (1fcos’0, -2sin’0, cos’6, ) |InEI(9;)

Then, using algebra to derive the inverse matrix in a 3 x 3 matrix form, eventually |

obtain the inverse matrix with a scale factor of 1/A, as described in Equation 3.5:

2cos* 6, —cos?0,)  2(cos*0, —cos?6,)  2(cos? 6, —cos’ 6,
1| cos’g, cos’o, cos’0; cos’ b, cos’9, cos’ 4, 35
Al cos’d, cos’é, cos’ 6, cos’ 0, cos’d, cos’l, |
2(sinzem _sin*9, ] 2(sinzﬁf _sinzenJ z{sinzé?n _sinzemj
cos’d, cos’h, cos’ @, cos’ o, cos’ @, cos’ b,
where,

cos’d, cos’d, cos’d, c€os’H; cos’H; cos?h,
A=2 - + - - ,
cos’d, cos’d, cos’H, cos’H, cos’l, cos’ o,

The most significant finding related to this inverse matrix is the sum of each row. The

sums end up with O for the first row, -0.5 for the second row and 1 for the third row,
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respectively independent of the selection of stack angles. Equation 3.6 summarizes the

relationship in asimple form below:

InVp L d, d, dg)InEl,
InVs Y d,, d, d,|InEl ]|, (3.6)
Inp dy, dg dg A InEl;
where,
3
iZdljzo’
A
3
iZolzjz—o.s,
Aj=l
1 3
Kngjzl

i1

Then, | express the inverse matrix calculation of noise-added Els with the noise level oy

asfollows:

InVp =%(dn|n El, +d, INEl, +d,InEl,)
+%(d1l In(1+ Sy, )+ dy, In(L+ 5, )+ dy In(1+ Sy ))

InVs =%(d21InEln +d,,INEl, +d,InEl, )

3.7)
WL%(d21 IN(+ Sy, )+ d,, IN@+ Sy, )+ In(1+ Sy ))

|np=%(d3l|nE|n+d32|nE|m+d33|nE|f)

+%(d31 In@+ &, )+ ds, IN(1+ 5y, )+ dog In(1+ Sy ))

Therefore, when the noise is offset-consistent for all Els, | notice that the noise effect of
such offset-consistent noise is given in the following form by taking the relationship

described in Equation 3.6 into account:



noise _effect _ for _InVp = %(d11 +d,, +dy,)In(l+35, ) =0,
. 1
noise _effect _for _InVs = K(dﬂ +d,, +d,,)In(1+ 5, )=-05In(l+5,) (3.8)

noise _effect _for _Inp = %(d31 +dg, +dgy)IN(L+ 5y ) = In(L+ 5y, ).

This result explains exactly what | observed in Figure 3.3, where Vp was not influenced
by 25% offset-consistent noise on Els, but the maximum noise effect is demonstrated in
the determination of p and a small noise effect existsin Vs. In the actual application, the
noise effect follows an exponential, so that when p has e'=2.72 noise effect, Vs will
exhibit > =0.61 noise influence. In other words, the effect of offset-consistent noise on
Vs is about 22% of that for p.

On the other hand, in the case of random noise, | expect all determinations of Vp, Vs

and p to be influenced by noise as expressed below:
. 1
noise _ effect, = X(oli1 In(1+ 8, )+ d,, In(1+ 5y, )+ d i In(1+ 5, )) (3.9)
In Equation 3.9 the most important point is the factor /A, which is given formulated
in Equation 3.5. This scale factor is a function of the three stack angles of seismic data.
The value varies widely, depending on the selection of stack angles. For example,

assuming the seismic data with a near-stack angle of 5° and afar-stack angle of 45°, what

is the optimal mid-stack angle to eliminate the influence of random noise for elastic-

45



impedance anaysis? Figure 3.4 shows the scanning result of 1/A; | call it a noise

enhancement factor, as a function of the middle-stack angle.

: : : angle for Elnear=5 degrees[ -~ .
""""" Lo angle for Ear = 45 degrees |-

11A : noise enhancement factor

5

i 1 1 |
10 15 20 25 30 35 40 45
Average stack angle for Elmid (degree)

Figure 3.4: Scanning result for the optimal mid-stack angle of seismic data in terms of
minimizing the effect of random noise on elastic-impedance analysis. | assumed a
near-stack angle of 5° and afar-stack angle of 45° for this case.

Based on this scan result, we can determine that the optimal angle to minimize the
random noise effect is about 33° for this case. Note that the answer is not just the
midpoint of near-offset angle and far-offset angle. Another parameter affecting the
calculation of 1/A is K=(Vs/Vp)?. Figure 3.5 shows the results of the calculation for /A

with varying Vp/Vs: 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, from the bottom to
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the top. Although the resultant curves shift the locations as increasing Vp/Vs, the angle
for the minimum 1/A staysthe same at 33°.

Likewise, it is possible to quantitatively evaluate the design of long-offset seismic
acquisition to reduce the effect of random noise. When we have enough separation for
the three stack angles, 1/A can be less than 1, which means that we can dilute the random
noise effect by taking sufficiently long offset for seismic data. In contrast to long-offset

acquisition, /A will be greater than 100, when the three angles are very close together.

1/A: noise enhancement factor

VpivVs=1.0: K=1.00

10“ | i | 1 i 1 i
5 10 15 20 25 30 35 40 45

Average stack angle for Elmid (degrees)

Figure 3.5: The calculation result of noise enhancement factor varying K=(Vs/Vp)-.
Vp/Vs changes from 3.0 to 1.0 by 0.2 increment from the top to the bottom. A near-
stack angle of 5° and a far-stack angle of 45° are assumed. Note that the minimum
value of /A isobtained at 33° for all cases.
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3.5 Possible sour ces of noise

In the consideration of noise, there are many possible sources of noise in seismic data
acquisition, data processing and inversion analysis. Table 3.1 summarizes severd
sources and the category of noise.

Acquisition system can induce noise at the same level for all offsets, in such case the
wavelet of seismic sourceis distorted from the ideal shape for entire survey. On the other
hand, low energy shots and/or bad receiver responses happening occasionaly are
appeared to be random noise after the binning of 3-D data. Likewise, noise derived from
acquisition conditions, such as swelling or feathering, is added trace by trace inconsistent
to incident angles. Thistype of noiseis categorized in random noise.

In data processing, first consideration is the remaining influence of multiple. For the
case study dataset, the radon transform was used for suppressing multiple. Consequently,
amplitudes along hyperbolic events are preserved. This means the energy of multiple
remains only where the multiple signal across the hyperbolic events: the influence of
remaining multiple is not offset-consistent. Another important source of errors in data
processing is velocity analysis. When an inappropriate velocity model is assigned to
some depth ranges, the velocity curve move-out the seismic data by inappropriate
amounts, which depend on offset. If the estimation error of velocity is small, the move-
out errors may occur in one direction, the resultant angle stack seismic data include both
offset-consistent noise and random noise. In contrast, if the estimation error of velocity is
large, each angle stack exhibits different influence from the inappropriate velocity model.

In this case, the influence is categorized in random noise.
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The possible main sources of offset-consistent noise are in seismic inversion analysis.
First one is low frequency model generated by the well-log data of control. Low
frequency model is indispensable to perform seismic inversion to provide a background
trend of impedance change. However, when the well-log data include distorted values of
velocity and/or density, the unreasonable values affect the low frequency models for all
stack angles since the all models are derived from the same well-log data. In addition, in
my case, | use a same wavelet to invert al seismic angle stacks since the angles are close
enough (9°, 15°, 23.5°) and there is no significant difference among extracted wavelets
for the three angles. By this application, the errors in wavelet estimation uniformly affect
the inversion results of all offset angles. Note that using a common wavelet may induce
offset-consistent noise but it reduces the risk of inducing random noise caused by
employing different wavelets for different offset angles. When different wavelets are
used for different angle stacks, the mismatches between the estimated wavelets and the

seismic data are fully random, which are appeared as random noise in the inversion

results.
Table 3.1: Summary of possible source and the category of noise.
Possible source of noise Offset- Random noise
consistent
noise
5 Acquisition system (source, receiver) X X
o
g | Acquisition conditions (swelling, X
< | feathering)
o | Remaining multiple influence X
i
%
g . .
g Inappropriate velocity model X X
< Errorsin low frequency model X
‘D
o — .
2 Insufficient wavelet matching X X
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3.6 Constraintsfor elastic-impedance analysis

Based on the discussion about the effect of noise on elastic-impedance analysis, |
notice that the precise balance among the three Els, which is equivalent to eliminating the
effect of random noise on the inverse-matrix calculation, is the key to deriving reasonable
values of Vp, Vs and p. | develop a method to restore balance among Els from the noise-
distorted Els of the seismic-inversion results.

The first step is to find the least-squares linear fit in the InEl-sin?d plane. Assuming
the thickness of reservoir layer is thick enough relative to the seismic resolution, in
smaller angles of seismic offset, up to around 30°, the reflection coefficient is expected to
have alinear trend in the amplitude-sin®d plane; in other words, the reflection coefficient
is half of the logarithmically scaled impedance response. At each seismic data point, |
apply least-squares fitting to the Els in the InEl-sin?d plane to obtain the general trend as
shown in Figure 3.6. Deviations of the data from the straight line are considered to
indicate random errors in the Els. The fit El values are used in the subsequent
interpretation.

The second step is to apply rock-physics bounds to constrain the distribution of Els
within a theoretically reasonable range. | examined well-log data in the target area to
determine the constraining bounds for the actual dataset. Figure 3.7 shows the rock-
physics bounds in the velocity-porosity planes. The left chart shows the upper and lower
modified Hashin-Shtrikman bounds computed for a mixture of mineral a ¢=0 (zero
porosity) with soft sediment at ¢.=0.4 (a critical porosity). The green lines represent

modified bounds for a quartz-water mixture; the red lines represent a mixture between the
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average solid of the target field (Hill’s average of felspathic arenite) and water; the blue
lines are for a clay-water mixture in the Vp-porosity plane. | emphasize that these are
modified bounds representing the soft sediment at #.=0.4 with mineral a ¢=0. The

parameters used to cal culate the bounds are summarized in Table 3.2.

Table 3.2: Summary of the parameters used to calculate the Hashin-Shtrikman bounds of

sandstone.
Material Bulk modulus (GPa) | Shear modulus (GPa) | DeSY
(g/cm)
quartz 37 44.73 2.65
average solid of the
target field 35.64 28.17 2.66
clay 23 8 2.58
water 2.7416 0 1.0038
mixture at critical 0.6psolid +
. 4.3575 0.09
porosity (¢=0.4) 0.4purine
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Figure 3.6: The first step of an El analysis method. | apply a least-squares linear fitting
to Elsin the InEl-sin’é plane to obtain the general trend. Three points and the linear
trend are extracted from an application for the actual data set.
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Figure 3.7: Comparison between the modified Hashin-Shtrikman bounds of severa
schemes and the distribution of actual data. The green lines represent a quartz-water
mixture; the red lines indicate a mixture of water and the average solid of the target
field; the blue lines represent a clay-water mixture. The dashed lines in the Vs-
porosity plane are the transformed Hashin-Shtrikman bounds from the Vp-porosity
plane using Equation 3.10 for black lines; Vp/Vs=1.6 for magenta lines; Vp/Vs=2.0
for cyan lines. All bounds have 0.4 as the critical porosity.
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The data pointsin Figure 3.7 demonstrate well log data in the target area, color-coded
by the shale volume in fractions.

The right chart in Figure 3.7 exhibits the same modified bounds and data in the Vs-
porosity plane with three additional bound sets. The black dashed lines indicate the Vs-
porosity bounds calculated from the Hashin-Shtrikman bounds in the Vp-porosity plane
using modified Han’s equation for the Vp-Vs relation shown below, which gives us a

good fit to the actual measurements in the study area:

Vs =0.79%vp - 0.79. (3.10)

The dashed magenta lines represent the transformed Hashin-Shtrikman bounds from the
Vp-porosity plane, assuming that the Vp/Vs ratio is 1.6. The dashed lines in cyan are the
transformed Hashin-Shtrikman bounds from the Vp-porosity plane, assuming that Vp/Vs
isequa to 2.0. | used 0.09 GPa as the shear modulus at the critical porosity of water-
saturated sandstone, which is compiled from the measurements of unconsolidated
sandstone by Zimmer (2003).

Next, given a porosity-p relation in the field, | converted the horizontal axis to density
and generated Figure 3.8. In addition, | show the Vp/Vs trend in terms of density change
in Figure 3.9. Since El is a function of Vp, Vs and p with an incident angle of &, the
Vp/Vs trend is an important factor in selecting adequate rock-physics bounds to constrain
the EIl distribution. Figure 3.10 shows several bounds and the actual well-log data
distribution, color-coded by the shale volume, in the EI(23.5°)-E1(9°) plane. Considering
all the plots described above, the appropriate bounds | selected to limit distribution of Els

are the dashed black bound for the upper limit and the dashed magenta line for the lower
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limit in the EI(23.5°)-EI(9°) plane. Since the variation of Els is mainly controlled by

Vp/Vs, the selection of appropriate rock-physics bounds for constraints is equivalent to

the selection of the relevant Vp-Vs relations.

Once | choose the bounds, the seismic inversion results are crossplotted in the El,-

Elnear plane, and al points in the plot are squeezed to lie between the upper and lower

bounds in the direction orthogonal to the bound lines, keeping relative positions. The

details of this processisexplained in the next. Then | determine exactly the samerelative

locations between the bounds in Elnyig-Elnear plane to obtain corrected Elyig. By doing

this, | correct the three El values to fall within the expected bounds, while preserving the

relative difference of El responses derived from seismic impedance inversion.
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Figure 3.8: Comparison between the modified Hashin-Shtrikman bounds of several
schemes and a distribution of actual data. The representation scheme is same as
Figure 3.7. All modified bounds assume 0.4 for the critical porosity.
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Figure 3.9: The modified Hashin-Shtrikman bounds of the schemes described in Figure
3.7 in the crossplot between the Vp/Vs ratio and density. The dashed lines
correspond to the lower Hashin-Strikman bounds in the velocity-porosity plane; the
solid lines are equivalent to the upper Hashin-Strikman bounds. Note that the upper
and lower Hashin-Strikman bounds are coincident when Vp/Vs is a constant value.
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Figure 3.10: Comparison between the modified Hashin-Shtrikman bounds in the schemes
described in Figure 3.7 and the actual data distribution calculated from well-log data.
The dashed lines correspond to the lower Hashin-Strikman bounds; the solid lines
are equivalent to the upper Hashin-Strikman bounds in the vel ocity-porosity plane.
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3.7 Validation of the method with a case study

| applied the method described in the previous section to a dataset from an offshore
oil field with four control wells, plus three angle stack seismic cubes with 9°, 15° and
23.5° average offset angles. The target reservoir is interpreted as blanket sandstone
sheets in the depositional environment of braided river channel stacks in the early
Jurassic age. The well-log database includes all the standard logs from one vertical well
and three deviated wells. The velocity logs for the deviated wells are corrected in terms
of velocity anisotropy by the method discussed in Chapter 2. The Vs log is not available
for all the wells, but | generate the Vs logs for necessary wells using Equation 3.10, since
that equation gives us a good fit to the actual data of available Vp and Vs in thisarea, in a
brine-saturated condition.

Figure 3.11 compares the results of the inverse-matrix calculation applied to the
seismic cubes without the rock physics constraints. | compute Vp, p and Vs from the Els
derived from the seismic data at the location of a vertical well, with and without a |east-
squares fit in the InEl-sin®d plane. In the three columns on the left side, the red dashed
lines display the resultant Vp, p and Vs computed from the Els without any processing.
The right three columns demonstrate the Vp, p and Vs calculated from the Els extracted
from aleast-squares fit in the InEl-sin®d plane asillustrated in Figure 3.6. In both cases, |
show the actual Vp, p and Vs in blue lines. The horizontal axes are in logarithmic scale.
Note that the disagreement of the inverted Vp, p and Vs relative to the actual well-log
data subsequent to the least-squares fit are one order of magnitude less than for the

original Elswithout the least-squares correction. Furthermore, the shapes of the resultant
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logs on the right are different from those on the left, suggesting that simply scaling the

original results will never be equivalent to the | east-squares processed results.
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Figure 3.11: The inverse-matrix calculation results at a vertical well location from the
unprocessed seismically derived Els, in red, in the left three columns. The three
right columns exhibit the calculation result from least-squares-fitted Elsin red. The
blue lines are the actual well-log data. Note that the horizontal axes are logarithmic
scale, but the range is one order smaller in the right half.

The second step is performed in Ely-Elqear plane as in Figure 3.12. First, | fix the
Elnear vValue, vertically compress the data variation of Els,, into the range of the-rock-
physics bounds, and find vertical displacements (dY). Next, | fix the Els, and
horizontally compress the data scattering of Elnear into the rock-physics bounds, to find
horizontal displacements (dX). Eventually, | employ trigonometric calculations to
determine the diagonal shift (dx, dy) from the horizontal displacement (dX) and the

vertical displacement (dY) in Equation 3.11.
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dx = dXdY 2 /(dX ? +dY 2)

3.11
dy = dX 2dY /(dX 2 + dY 2) (S0

The crossplot of Elge and Elneqr IS displayed in Figure 3.12; red lines represent the
employed rock-physics bounds; the blue lines are drawn to be paralel to the bounds
whereas containing almost of the raw data. After corrections are applied, the blue lines

coincide with the red lines together with al the data points.
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Figure 3.12: The crossplot of the seismically derived El data between Elg,, and Elear
before constraining with rock-physics bounds (after least-squares fit). The red lines
are the employed rock-physics bounds; the blue lines are lines paralldl to the bounds,
which will coincide with the red lines after the second step. The color code is the
two-way time of the seismic data point in millisecond.

After applying the second step, | extracted the corrected Els from the seismic along

the vertical well and computed Vp, Vs and p by the inverse matrix method. Figure 3.13
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shows the results in red, with the actual well-log data in blue. Since the analysis results
are derived from the seismic inversion, | cannot obtain high resolution response at the top
of the reservoir at an approximate depth of 2350m, due to the shoulder effect. In
addition, | observe a spiky miscalculation in p at 2500m and a small drift in Vs in the
range from 2460m to 2500m. However, the overall results are a significant improvement
relative to the well data, so that we can grasp the trends of these three fundamental rock
properties.

The rock-physics constraints discussed above correct the random-noise-distorted El
values: random noise expands the data scattering in a direction perpendicular to the rock
physics bounds in Figure 3.12. On the other hand, offset-consistent noise alters the data
location in a direction parallel to the rock physics bounds in Figure 3.12. Therefore the
effect of offset-consistent noise is not eliminated by my method. It is suggested that the
spiky miscalculationsin p and Vs in Figure 3.13 are derived from offset-consistent noise.
The level of the offset-consistent noise is not significant in this case since the red dashed
lines capture the background trends of the well-log datain blue.

In addition, the resdual between actual seismic trace and synthetic seismogram
increases by applying my method. Any seismic-inversion algorithms minimize an
objective function to find the best fit between the actual seismic and the inverted
impedance using a wavelet. However, my method re-expands the residua to restore a

better balance among the three Els.
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Figure 3.13: The results of the inverse matrix calculation from our method fully applied
toElsinred at awell location. The blue lines are the actual well-log data. Note that
the significantly improved good match between the seismic-analysis result and the
well data compared to Figure 3.11.

Once | obtain Vp, Vs and p separately, | can take advantage of numerous rock-physics
tools. One of the benefits of using these tools is to evaluate shale volume quantitatively
from velocities and p, in order to detect the distribution of sand bodies from 3-D seismic
data. | generate the crossplots of Vp-p aswell as Vs-p in Figure 3.14. The larger circles
in the figure are the points of resultant velocity-p derived from El analysis of the seismic
data at awell location. | aso plot well-log data color-coded by shale volume in small
dots in the same figure. Using the constant gradient indicated by the dashed line in the
plots, | determine the shale volume from the intercept of the same gradient line through

each data point. | usethe Vp-p plane since the Vs exhibits more errorsin Figure 3.13.
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Figure 3.14: The crossplot of Vp-p on the left and Vs-p on the right. The dashed lines
indicate the gradient used to determine shale volume in these plots. The large circles
are points derived from the El analysis of seismic data; the points color-coded in
shale volume are well-log data.

In this process, the data location in the velocity-p plane is different depend on the
fluid component in arock. Figure 3.15 shows an example of the location shift due to the
fluid saturation determined for a well-log data. The open circles represent the data
location with in-situ fluid in the reservoir color-coded by water saturation (Sy,), where the
remaining fluid is 39.4°API oil (S,=1-Sy). Then, the solid markers correspond to the data
location after fluid-substituted to 100% water-saturated condition by the Gassmann
equation. The solid lines are iso-shale-volume contours. Note that the direction of the
data shift by oil saturation is almost parallel to the iso-shale-contours, since oil saturation
decreases both velocity and density. Figure 3.16 compares the shale volume from the
data location with in-situ fluid and that from the data location with 100% water. As
observed in the left chart, the data location with in-situ fluid gives us higher shale volume
than that with 100% water. However, the differences between the two results are mostly

less than 10% in the shale volume as shown in the histogram in Figure 3.16.
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Vshale from the data with in-situ fluid
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Figure 3.15: The shift of data location due to fluid saturation for a well-log data in the
Vp-p plane. The open circles represent the data location with in-situ fluid. The solid
markers correspond to the data location after fluid-substituting to a water-saturated
condition. Both are color-coded by the initial water saturation. Note the direction of
data shift is parallel to the iso-shale-volume contours in the solid straight lines.
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Figure 3.16: The comparison between the shale volume from the data location with in-
situ fluid and that with 100% water. The rock with in-situ fluid gives us higher shale
volume than the rock with 100% water. However, the differences between two
results are less than 10% in shale volume as shown in a histogram.
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Figure 3.17 compares the estimated shale volume with the shale volume from the CPI
(computer processed interpretation) well-log analysis of the well. In this figure, the
yellow trace is the shale volume by well-log analysis, whereas the green line is a mean
filtered trace of the yellow data. The magenta trace is the shale volume based on the Vp-
p plot in Figure 3.14; the red dashed trace isthe resultant shale volume from the crossplot
of Vs-p. | capture the basic trend of the shale volume profile, although I miss the sharp
boundary at the top of the reservoir around 2350m again; moreover there seem to be time
shifts or phase rotation around 2460-2480m. Eventually, the complete computation
sequence is applied to the 3-D seismic dataset. In Figure 3.18, | compare the original
seismic data of the near stack and the shale volume section derived from the El analysis
through the vertical well displayed in Figure 3.17. The section is an east-west seismic
line extracted from the 3-D seismic data. The well-log data in red indicates the shale
volume by log analysis, which is the same trace as the yellow trace shown in Figure 3.17.

We cannot resolve the lithology in the amplitude section at the bottom of Figure 3.18.
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Figure 3.17: The comparison of shale volumes. The yellow trace is the shale volume
from well-log analysis, the green line represents a mean filtered version of the
yellow trace. The magenta line exhibits the shale volume determined in the crossplot
between Vp and p, based on the El analysis of the seismic data. In addition, the red
dashed line exhibits the shale volume estimated in the crossplot for Vs and p from

the El analysis.
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Figure 3.18: Shale-volume section obtained by the elastic-impedance analysis constrained
by rock-physics bounds at the top. The bottom is the near-stack seismic section at
the same location. The well log in red indicates the shale volume from well-log
analysis, 0 on the left end and 1 for the right-end. Note that the top section
demonstrates good agreement with the well log. The wiggle traces in the top section
are the same seismic data as the bottom section. The color code in the top section is
shale volume clipped in the range from 15% to 65%.

In contrast to the bottom section, we recognize the sandstone layers clearly in the shale
volume section at the top. Moreover, the shale volume agrees well with the well-log
analysisin red at the location of Well A, where the shale volume is O at the left end and 1
at the right end. For comparison, | superimposed the red wiggle traces in the top section,
which are the same seismic traces as those in the bottom section. The color code for the
top section is clipped from 15% to 65% of the shale volume to emphasize the variation of

lithology in the section.



Likewise, | present the comparison of the shale-volume section to the elastic-
impedance section derived from the seismic inversion in Figure 3.19. In this comparison,
we notice that the impedance section does not manifest the lithology distribution. We
only recognize a subtle indication of the fact that higher impedances correspond to higher
shale volume.

| export the result of the elastic-impedance analysis constrained by rock-physics
bounds into 3-D visualization software to understand the distribution of sand bodies.
Figures 3.20 and 3.21 display the sand-body distribution. Based only on geologic data,
geologists in charge of this field interpreted that the reservoir is blanket sandstone of
braided river channel stacks. In Figures 3.20 and 3.21, we distinguish the sandstone
distribution derived from the seismic data; the image agrees with the depositional
environment given by the geologists. Furthermore, | confirmed that the sand-volume
profiles are consistent to the well log analysis results at all well locations of available
wells. | set the color code from 55% sand volume at the 127 side of the legend to 85%
sand volume at the -128 end of the legend for these figures. Then, | tune the transparency
to illuminate the sandstone bodies which have more than 60% sand volume in Figure
3.20. The advantage of this approach is that we can assess the result in quantitative ways.
In Figure 3.21, | change the transparency setting to highlight the sand bodies with more
than 80% sand volume. | detect the core parts of the channel stacks in this figure. In
fact, now we can recognize sand bodies, which exhibit similar shapes to longitudinal bars
and/or meandering channels. | observe several sets of parallel channels with crossing
channels between those in Figure 3.21. Also small streams seem to join the main

channels from the side in the direction from NNE to SSW, which indicates the flow
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direction of this braided-river system in Jurassic age. The wide spread sandstone bodies
are surrounding the core parts of the channel stacks as shown in Figure 3.20.

Based on the observations in these figures, the channel stacks extend in a NNE-SSW
direction. Thus, | expect a higher rate of fluid flow in that direction, which is aso

suggested by reservoir engineering data of this producing oil field.
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Figure 3.19: The shale-volume section obtained by the elastic-impedance analysis
constrained by rock-physics bounds at the top. The elastic-impedance section of the
near- stack seismic data is at the bottom. This elastic-impedance data is one of the
input data for the analysis. Thereistendency for higher impedances to correspond to
higher shale. However, the lithology distribution is not clear in the impedance
section at the bottom.
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Figure 3.20: The 3-D visualization of the resultant sand-body distribution. The color
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Figure 3.21: The 3-D visuaization of the resultant sand-body distribution. | set the
transparency to illuminate the portion with more than 80% sand volume. Note that
there are sand bodies which exhibit shapes similar to longitudina bars and/or
meandering channels.
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3.8 Comparison with unprocessed data

What if we do not apply the rock-physics constraints to control the data scatter?
Figures 3.22 and 3.23 give the answer to this question. Figure 3.22 shows the sandstone
distribution derived from the Els without any correction processes, but | just applied the
exactly same inverse matrix calculation to determine Vp, Vs, p, then determine the shale
volume using the data location in the Vp-p plane. Note that the color code is still the
fractional sand volume (1 - shale volume). However, the minimum value at 127 on the
dark blue end corresponds to -10™, and the scale is logarithmic due to the abnormal
calculation results from the unprocessed Els. In thisfigure, which is equivalent to Figure
3.20, we cannot observe any patterns to be considered fluvia deposits. Likewise, even
when we extract very sandy portions as shown in Figure 3.23, no pattern of sand bodiesis
mapped out. This result indicates that the constraints based on the rock-physics bounds
are indispensable for deriving appropriate results as shown in Figures 3.20 and 3.21.

In many cases, simple seismic attributes--amplitude strength, wavelet form,
instantaneous phase, instantaneous frequency, and so on--work well to determine the
lithology distribution. Figure 3.24 shows the amplitude of the near-stack seismic of the
case-study dataset. | arrange the transparency of the display to highlight the reflectors of
strong amplitude, both in the positive and negative directions. We observe a pair of
strong paralel reflectors near the compass symbol at the bottom left; these are
correlatable to the sand bodies in Figure 3.21. However, the extension of these channels

to the northeast direction isnot as clear asin Figure 3.21.
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Figure 3.22: The 3-D visudlization of the sand body distribution derived from
unprocessed Els. The color code is sand volume, but 127 corresponds to -10' due to
the abnormal calculation results from the unprocessed inputs, the scale is
logarithmic.
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Figure 3.23: The 3-D visualization of the sand-body distribution derived from
unprocessed Els. This shows the result of extracting the portions of high sand
content. Note that we cannot observe any clear sediment bodies.
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Figure 3.24: The strong amplitude reflectors in the near-stack seismic data. A pair of
strong parallel reflectors at the bottom left are correlatable to the channels in Figure
3.21. However, the extension in the northeast direction is not as clear as in Figure

3.21
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Figure 3.25: The strong amplitude reflectors in the far-stack seismic data. There are
channel-like features around the center, but the reflectors are dimming out to the
edge of thefigure.
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Furthermore, in the extended area, the locations of strong amplitude in Figure 3.24
deviate from the channel distribution in Figure 3.21.

Figure 3.25 exhibits the strong reflectors in the seismic data of the far stack. We
observe channel-like features around the center of the figure, but the strong reflectors are
not clear in the remaining area.

These facts suggest that it is difficult to obtain the total picture of lithology
distribution from the original seismic data, although each angle stack has some
qualitative information about the lithology distribution. We need to apply a processing
sequence, such as the one | discussed in this chapter, to determine the lithology

distribution in a quantitative manner.

3.9 Conclusions

| discussed the role of noise on the inverse-matrix calculation in Equation 3.3, when
we derive Vp, Vs and p from the elastic impedances by the seismic inversion of angle-
stack data. The effect of offset-consistent noise is different from that of random noise. In
the case of offset-consistent noise, the noise effect appears most prominent in the
calculation of p, but the effect on the computation of Vs is about 22% of the effect on p.
Moreover, there is no effect on Vp determination. However, if the noise occurs
randomly, the effect occurs equally in the determinations of all three properties, Vp, Vs
and p. In addition, | observe the noise enhancement factor 1/A, as described in Equation
3.5 for the effect of random noise. Since the 1/A is afunction of the three stack angles, if

the angles have only small separations such as that of the far-stack angle which is less
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than 30°, the effect of random noise will be enhanced on an exponential scale. But the
scale is less than 1 when the separations of stack angles are large enough, so that the far-
stack angle exceeds 60°. Therefore, in this case, the effect of random noise is reduced by
the inverse-matrix calculation. To minimize the random-noise effect for elastic-
impedance analysis, the noise-enhancement factor 1/A is practical for finding the optimal
combination of stack angles quantitatively.

Based on the outcomes of noise effects, | developed a method to analyze elastic
impedances to derive Vp, Vs and p, by eliminating the influence of noise. This new
method consists of two steps. In the first step, to obtain the general trend of Els, | perform
least-squares linear fitting of Els in the InEl-sind plane. Next, | apply rock- physics
bounds to constrain the data distribution of the Els in the Els-Elnear plane. This process
restores the strict balance of the three Els within the constraint of the applied rock-
physics bounds. Given the resultant Els, | calculate Vp, Vs and p by applying the inverse
matrix in Equation 3.5.

Using the dataset of an actual oil field, | demonstrate the result of a case study. The
computed Vp, Vs and p are processed one step further to detect subsurface sand bodies. |
successfully map out the distribution of fluvial sand bodies at a depth of 2400m; buried
fluvial channelsin Jurassic age.

In the next chapter, | will discuss a sequence of calculations and analyses to derive
the fluid saturation in a subsurface formation based on Vp, Vs, p and the shale volume

determined in this chapter.
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Chapter 4

Quantitative detection of fluid
distribution using time-lapse seismic

4.1 Abstract

Although previous seismic monitoring studies have revealed several relationships
between seismic responses and changes in reservoir rock properties, the quantitative
evaluation of time-lapse seismic data remains a challenge. In most cases of time-lapse
seismic analysis, fluid changes are qualitatively detected by changes in amplitude
strength, travel time, and/or Poisson’s ratio. Reservoir pressure, another important target
of time-lapse analysis, tends to induce time-lapse responses that are different from those
of the fluid changes.

| develop a workflow to determine the saturations of formation water, oil and gas

from seismic data through a sequence of analyses and calculations, based on the three
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elastic impedances at different angles derived from seismic inversion. In Chapter 3, |
discussed the preparation of this analysis in terms of determining Vp, Vs, p and the shale
volume from the elastic impedances. In this chapter, | present the subsequent steps,
considering the pressure effect and the saturation scale of fluids for time-lapse seismic
analysis. Then, | demonstrate a deterministic approach to computing the fluid saturation
to evaluate time-lapse seismic data. In this approach, | derive the physical properties of
the water-saturated sandstone reservoir, based on severa inputs: Vp, Vs, p and the shale
volume from seismic analysis; the average properties of sand grains; and formation water
properties. Next, by comparing the in-situ-fluid-saturated properties with the 100%
formation-water-saturated reservoir properties, | determine the bulk modulus and the
density of the fluid phase in the reservoir. Solving three equations simultaneously
(relating the saturations of water, oil and gas in terms of the bulk modulus, density and
the total saturation) | compute the saturation of each fluid. | use areal time-lapse seismic

dataset from an offshore ail field in the Norwegian North Seafor this study.

4.2 Introduction

The Norwegian North Sea is an area where time-lapse seismic is commonly used to
evaluate producing oil fields. Severa time-lapse seismic studies were published on the
North Sea during the last decade. These include studies of the Oseberg field (Johnstad et
al., 1995, Rutledd et al., 2003), the Magnus field (Watts et a., 1996), the Gullfaks field
(Sonneland et al., 1997, Veire et al., 1998), the Draugen field (Gabriels et a., 1999), the

Statfjord field (Al-Ngjjar et a., 1999) and the Snorre field (Smith et a., 2001). In the
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latest case study of the Oseberg field (Rutledal et al., 2003), the authors state that the
Poisson ratio generated from acoustic and elastic impedance inversions is the best
qualitative indicator of the changes in subsurface fluid saturation relating to production;
and the acoustic impedance is an appropriate parameter for discriminating lithologies in
thisfield. On the other hand, in the cases of the Draugen, Statfjord, and Snorre fields, the
authors have confirmed that the time-lapse change of amplitude strength, rather than
Poisson’s ratio (i.e., brightening or dimming) is the key response indicating the
replacement of fluid by the production and injection activities in the fields.

Despite the efforts described above, the quantitative analysis of time-lapse seismic to
detect the change of fluid saturation remains a challenge because of the typically poor
match between the model predictions and the actual seismic data. There is uncertainty
about which parameter most affects the seismic response. For example, in the report of
the Magnus field by Watts et al. (1996), reservoir pressure, rather than fluid replacement,
was identified as the dominant cause of the amplitude change, whereas the opposite was
found to be the case in the Oseberg field (Rutledal et al., 2003).

An impressive example of quantitative analysis of time-lapse seismic was recently
demonstrated by Lumley et al. (2003) and Lumley (2004). They adopt two seismic
attributes, the P-wave information content (Ap) and the S-wave information content (As),
to generate a crossplot between the time-lapse differences of both attributes. Then they
find the axes representing the changes in pressure and water saturation in the crossplot to
derive the quantitative indicators of the changing properties. The method worked well in
the Schienhallion and Gullfaks fields, yet the physical background of the method is not

clearly illustrated.
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| develop a deterministic process to derive fluid saturation from seismic and well log
data; velocities, density and fluids saturation are calibrated to the time of seismic
acquisition. Therefore, | avoid confusion regarding the causes for the time-lapse changes

iN selsmic responses.

4.3 Pressur e effect

The two main causes of the time-lapse change in seismic responses are the changes in
fluid saturation and/or effective pressure, due to the production of hydrocarbons. First,
using the result of core velocity measurements for the target oil field, | examine the effect
of pressure change. All the measurements are carried out on dry rock samples. The
velocity is measured under different effective pressures. Figure 4.1 illustrates the
pressure dependence of ratio between Vp measured at a specific effective pressure and Vp
at the effective pressure of 30MPa. The red line represents the approximated overall

trend for Vp, which is given below:

Vp(PeffectiveMPa)/Vp(30MPa) = 1 - 0.38 exp (- PeffectiveMPa/6). (4.1

Likewise, | obtain an equation for the overall trend for Vs as follows:

Vs(PeffectiveMPa)/Vs(30MPa) = 1 - 0.32 exp (-PeffectiveMPa/7). (4.2

Given the equations above, | calculate the velocity change during time-lapse seismic
acquisitions according to the pressure change in the field. | use the formation pressure

derived from the reservoir simulation for this analysis; and effective pressure (confining
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pressure minus formation pressure) is calculated, assuming that the confining pressure
from overburden formations remains constant.

Figure 4.2 demonstrates the change in effective pressure during two seismic surveys.
The solid markers represent the first survey; the empty markers denote the second survey.
The effective pressure increases during production, since the formation pressure of the
reservoir is reduced due to oil production. Note that the different wells demonstrate
different pressure ranges, but the pressure difference between the two seismic surveys at
each well isamost identical, as shown in Figure 4.2.

Next, | compute the velocity change corresponding to the pressure variation; | plot the
calculation result in Figure 4.3. In this field, the first time-lapse seismic data was
acquired several years after the start of production, so the effective pressure was already
high--more than 19 MPa--as shown in Figure 4.3. This range of pressure corresponds
very closely to the ceiling of the highest effective pressure in Figure 4.2. As aresult, the
increase in effective pressure due to oil production does not significantly affect the
velocity change. Based on the result of this analysis, | conclude that the velocity changes
due to pressure variation are less than 1% of the velocities observed in the first seismic
survey. Consequently, the effect of pressure change on velocity is negligible in this case,

so we will not attempt to infer pressure change from the seismic data.
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Figure 4.2: Pressure change between two seismic acquisitions.
represent the first seismic survey. The empty markers correspond to the second
survey. Effective pressure, the difference between the overburden pressure and the
formation pressure, increases during production, since the formation pressure of the

reservoir declines due to oil production.

pressure are amost identical, except for the green data.
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Velocity change ratio for time lapse seismic analysis
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Figure 4.3: The velocity changes corresponding to the pressure changes in Figure 4.2.
The degree of the velocity change is less than the 1% change in the velocity in the
first survey. | convert the increase of effective pressure to the increase in velocity
using Equations 4.1 and 4.2. Solid markers represent Vp, and empty markers denote
Vs.

4.4 Fluid-saturation scale

The effect of the saturation scale of formation fluids on seismic responses was
extensively discussed in Sengupta et al. (2003). We usualy adopt the fluid saturation,
which is the output from the flow-simulator of a target field, to control seismic analysis.
However, in general, the grid size of flow simulators extends severa tens of meters,
while seismic responses vary depending on the fluid saturation profile on a much smaller
scale. Consequently, unless we apply an appropriate downscaling technique, the seismic
model based on the output of flow simulators may encounter significant errors. Sengupta
et al. (2003) presented a method for restoring the fine-scale profile of fluid saturation,

using porosity as a guide for re-allocating gas saturation, the fluid that controlled the
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seismic response in their case. They constrained the total volume of free gas as a
constant. Then, they accumulated the gas into the intervals in which well-log analysis
had identified high-porosity sandstone. The corrected saturation profile was used to
model seismic responses, and when the saturation profile was downscaled by an
appropriate factor, the resultant amplitude strength in root mean sgquares matched the
actual seismic datawell. | employ a similar approach; however, instead of using porosity
as a guide for concentrating hydrocarbons, | adopt the origina oil saturation before the
production as an indicator of highly permeable zones as below:

S

oc S 4.3)

fluid _ downscaled — profile fluid _original — profile *
| assume that the original oil saturation reflects the permeability of the each fine layer of
sandstone better than porosity; since any fine layer with good permeability must have had
the potential to accumulate more oil than the surrounding formations in the initial
condition.

For the downscaling, | keep the average saturation of the downscaled profile same as

the saturation of a corresponding grid of the flow simulator as follows:

1 N (grid _top)

S (4.4)

fluid _simulator _grid — W fluid _ downscaled - profile *
i=1(grid _bottom)

Therefore, assuming an identical porosity distribution between the flow simulator and

the downscaled saturation profile, | preserve the volume of fluid for any given intervals.
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Figure 4.4: The generated fluid-saturation log of Well A for two seismic surveysin the
two left columns. The green line indicates formation-water saturation; the interval
between the green line and the red line (or to the right end) corresponds to ail
saturation. The red line to the right end represents gas saturation. The two right
columns show calculated elastic impedances. The color code is as follows: blue for
the near stack; red for the mid stack; green for the far stack.

The left two columns of Figure 4.4 illustrate the downscaled profile of fluid saturation
for Well A. The green lines indicate the saturation of formation-water, whereas the area
to the right of the green line corresponds to hydrocarbon saturations. In the hydrocarbon
region, the interval to the right of the red line represents gas saturation, while the interval
between the green and red lines, (or to the right of the green line when no red line exists)
represents oil saturation. The left-most column shows the fluid saturation profile for
seismic acquisition in 1997, and the next column shows that of seismic survey in 2001.
The right two columns show calculated elastic impedances (EI) of the two seismic
acquisitions, where the blue lines are the EI of the near stack, red are the EI for the

middle stack and green are the El of the far stack. | calculate al Els based on the well-
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log velocities and density after correction for fluids saturation. Note that despite the
approximately 25% difference in oil saturation between 1997 and 2001 in the upper half
of the reservoir, the Els are not significantly different. This result suggests that fluid
substitution from oil to formation-water for saturation changes less than about 25 %, at

around 2420 min Figure 4.4, may be difficult to detect by seismic impedance analysis.

4.5 Representative properties of the solid phase

| use the Gassmann equations (Gassmann, 1951) to obtain the bulk modulus of the in-
situ formation fluid. For this process, | need to determine the physical properties of the
solid phase of the reservoir. Figure 4.5 shows the mineral composition of more than one
hundred samples from the reservoir, based on laboratory measurements. As shown in the
same figure, the reservoir sandstone is comprised of about 40-60% of quartz grains; 10-
20% of feldspar; and a small number of lithic fragments. The sandstone is categorized as

subarkose arenite to fel spathic graywacke.



Figure 4.5: The mineral composition of the target sandstone reservoir. The sandstone is
comprised of 40-60% quartz; 10-20% feldspar; and a small number of lithic
fragments.

Figure 4.6 illustrates the crossplot of the calculated shear moduli and the bulk moduli
of the core samples. | use the Voigt-Reuss-Hill(VRH) average (Hill, 1952) to compute
the two elastic moduli for multi-mineral composition. Equation 4.5 shows VRH
averaging, where “fi* indicates the volume fraction of materia (mineral or lithic

fragment) “i”, and “M;" corresponds to a modulus of material “i”.

N
My = 0.5_2 fM, + 0"?

1 N'
T 2w

(4.5)

| exclude clay minerals from this calculation. Then, | mix the average grain with clay
according to the shale volume derived from the elastic impedance analysis of seismic

data using the method in Chapter 3. In Figure 4.6, the big yellow asterisk in the center is
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the median value of al the data points. | adopt these median values as the representative

grain shear and bulk moduli of the sandstone reservoir.

40
35 ——— — —— ——
: : 0O : :
©
5 et D
z | e | s
© 30 o oo T e oo
o i oi ¥ oK | |
— :
° o BR- .
E T
3 : L : :
o : # : ; :
L b ‘%” rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr b oo
E H o A | |
[13] o
2 aps
20 o e B e e —
&
15 i i i i
25 30 35 40 45 50

Bulk modulus of solid (GPa)

Figure 4.6: The crossplot of the calculated shear and bulk moduli of the sandstone in
Figure 4.5. | use the Hill average for multi-mineral compositions. Clay is excluded
from this calculation. Then, | use the shale volume from the elastic-impedance
analysis to vary the solid-phase properties by mixing the representative properties of
sandstone and clay, based on the shale volume. The color differences indicate
different subunits in the reservoir. The shapes of the markers correspond to different
wells.

4.6 Workflow to determine fluid saturation

At this point, | have prepared the necessary inputs including: (1) Vp, Vs, p and shale
volume from the El analysis, (2) the average properties of the solid fraction and the
properties of fluid phase. Now, | apply aworkflow as demonstrated in Figure 4.7. In the

input parameter box at the top left of the figure, all parameters are determined using an

86



elastic impedance analysis, discussed in Chapter 3. In fact, | estimated all of these
parameters twice, one for the 1997 vintage and one for the 2001 vintage. Then |
averaged the rock-frame properties (shale volume, porosity, bulk density of water-
saturated rock, bulk modulus of dry rock) from both vintages. The advantage of this
coupling is to reduce the artifacts during the further analysis, as discussed in Johnston et
a. (2003) and Gouveia et a. (2004). The subsequent analysis of fluid change has a
common rock model using the consistent frame properties.

The representative properties of the solid phase in the top right box were discussed in
the previous section. In addition, the properties of formation-water are calculated by the
method of Batzle and Wang (1992), using laboratory measurements of the formation-

water. | summarize the solid properties and the fluid propertiesin Table 4.1.

Elastic Inpedance Analysis Laboratory Measurements
e o i cesith o
El . El i El L—W¥ Nsolidr Hsolid» Psolid
- gme ) vV / e
__________.—-—-—" shale | \. /
VPruid-satr YStuidsatr Priuidsast —T———— ¢ = poerca— Kuater.cat . \

l v
i
K

fluid-sat

Kfluid

Figure 4.7: The workflow to derive the density and bulk modulus of in-situ-fluid. The
input data at the top right is described in this paper. The sequence of computations
to determine the final targetsis explained step by step in this section. The input data
in the top left box is discussed in Chapter 3.
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Table 4.1: The parameters of the solids and fluids.

Bulk modulus | Shear Modulus Density
(GPa) (GPa) (glem®)
. Average grain 38.13 34.93 2.67
Solidphase | (fraction=1-Vshale)
(fraction=1-¢) Clay 23 8 2.58
(fraction=Vshale)
Formation_water 2.7416 0 1.0038
Fluid phase
P Oil 0.7637 0 0.7136
(fraction=¢)
Gas 0.1217 0 0.2865

*Oil APl 39.4°API, GOR 116.7, gas gravity 0.806, water salinity 31,000ppm, pore

pressure 38M Pa, reservoir temperature 90°C.

| describe the workflow step by step as follows:

1.

| obtain the bulk modulus, shear modulus, bulk density and shale volume of the
in-situ-fluid-saturated rock at every data point in the seismic cube from the
result (Vp, Vs, p) of the El analysis as shown in the top left box of Figure 4.12.
| find porosity (@) by alinear transform with bulk density (o) as below:
¢=-0.5401+1.4350. (4.6)
This equation corresponds to the red line in Figure 4.8, which is the average
trend of the target reservoir calculated from well-log data. Then using the
estimated porosity, | derive a 100% formation-water-saturated bulk rock
density using the properties in Table 4.1. For this step, since | employ an
average trend in red in Figure 4.8, the points with higher water saturation on
the cyan line side in the same figure are assigned lower porosity than actual.
Likewise, the points with higher oil saturation on the green line side are
assigned higher porosity than the actual data. The deviation from the actual

porosity is summarized on the right in the Figure 4.8. The standard deviation
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Porosity

04

of the histogram is 6.9% (of the actual porosity): if porosity is 0.20, the

deviation for this point is plus or minus 0.0138.
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Figure 4.8: Average trend between porosity and bulk density from the well-log data of

the target reservoir. The red line represents the employed linear regression. The
cyan line corresponds to the trend for 100% water saturated condition and the green
line corresponds to 100% oil saturated trend. The histogram on the right exhibits the
estimation errors of porosity induced by an averaged trend.

| derive a 100% formation-water-saturated Vs by combining the 100%
formation-water-saturated density and the rock shear modulus. Since shear
modulus is less sensitive to the saturation fluid, | determine Vs first and
transform it to Vp in the next step.

For simplicity, since | only need the relative difference in the internal fluid
saturation, | use a linear relation between Vp and Vs for the 100% formation-
water-saturated condition and compute Vp for 100% formation-water
saturation. | find the following equation is a good regression for a well-log
datafrom case study area:

Vs=0.79Vp-0.79. (4.7)
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Getting the proper Vp for full formation-water saturation depends very much
on the Vp-Vs relation. | explore the Vp-Vs relations for reservoir rocks in
Chapter 5.

5. | process the result to calculate a rock bulk modulus for the 100% formation-
water-saturated condition.

6. Given the physical properties of the solid phase and the formation-water, as
summarized in Table 4.1, | employ Gassmann’'s equation in Equation 4.8 to

calculate the dry rock bulk modulus of at each seismic data location.

¢K solid

Kwater—saturated [ K +1- ¢J - Ksolid
water

Kay = , (4.8)
o ¢Ksolid Kwater—saturated —1- ¢

+
K K

water solid

where,
Kary s the bulk modulus of dry rock,
Kuwater-saturated 1S the bulk modulus of formation-water-saturated
rock,
Ksoiig 1S the bulk modulus of the solid phase
(mixture of the average grain and clay)

Kuwater 1S the bulk modulus of the formation-water

@ isporosity

7. | derive the bulk modulus of the in-situ fluid, using the rearranged Gassmann’s

relation given below:
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¢K K fluid —saturated K dry
solid -
Ksolid - Kfluid—saturated Ksolid - Kdry
Kuia = , (4.9
K K
fluid —saturated dr
1+ ¢ -~ Y
Ksolid -K fluid —saturated Ksolid - Kdry

where,
Ksid 1S the bulk modulus of the in-situ fluid
Ksolig 1S the bulk modulus of the solid phase
(mixture of average grain and clay)
Kid-saturated 1S the bulk modulus of the in-situ-fluid-saturated rock
Kary s the bulk modulus of the dry rock

¢ isthe porosity .

On the other hand, it is a ssimple process to find the density of the in-situ fluid
from the pruig-sauraed (DUIK density in the in-situ-fluid-saturated condition);
Puwater-saturated (the bulk density in the condition of 100% formation-water-
saturated); pwaer (the density of the formation water) and ¢ (porosity) as

follows:

P water—saturated P fluid —saturated
Pid = Pwater — p ) (4.10)

where,
Pruid 1S the bulk density of the in-situ fluid,

Pwater 1S the bulk density of the formation water,
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10.

Pwater-saturated 1S the bulk density of the formation-water-saturated
rock,
Priid-saturated 1S the bulk density of the in-situ-fluid-saturated rock,

¢ isthe porosity.

There are three possible fluids in the reservoir: namely, formation-water, crude
oil and gas. The laboratory analysis of the crude oil supplies us with all the
parameters to derive the properties of the oil and the segregated gas from the
oil, using the method of Batzle and Wang (1992) in the reservoir condition.

Now, | can form simultaneous equations in terms of the saturations of these
three fluids. First, | use Wood's equation (Wood, 1941) to demonstrate the
relationship between the bulk moduli of the three fluids, assuming a

homogeneous mixing scheme as below:

< (4.12)

in—situ- fluid
In this equation, “S” refers to the saturation of each fluid; “K” represents the
bulk modulus of each fluid. Second, | equate the density of the in-situ fluid to
the sum of each fluid as follows, where “ " corresponds to the density of each

fluid:
Pin-situ-tuid = Swater Puater T Soit Poit S gas Pgas - (4.12)

Then, to balance the total saturation of the three fluids, | require
1=S

+Sgi1 + S g - (4.13)

water oil
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11.

12.

Here, | rearrange the above-mentioned relations into the matrix form given in

Equation 4.14:
1/ Kin—situ—fluid 1/ Kwater 1/ KoiI 1/ Kgas Swater
pin—situ—ﬂuid = pwater poil pgas SoiI ) (414)
1 1 1 1 S

gas

| solveit to obtain the saturations of the three fluids using Equation 4.15:

1/ Kwater 1/ KoiI 1/ Kgas N l/ Kin—si’[u—fluid SWater
Pwater Pail Pgas Pinsiu_tid  |=| Sail |- (4.15)
1 1 1 1 S

gas

Likewise, | solve the matrix form expressed in Equation 4.16:

-1

Kwater KoiI K gas K in—situ— fluid Swater
pwater poil pgas pin—situ—fluid = SoiI ' (416)
1 1 1 1 S

gas
Unlike Equation 4.15, this matrix form represents a patchy saturation of the
three fluids. In other words, | assume heterogeneous distribution of three fluids
due to spatial variation of relative permeability and wettability in this case.
Finally, comparing the outputs from Equations 4.15 and 4.16 to the results of
well-log analysis at a well location, | determine the optimal weights to average
the homogeneous saturation (Equation 4.15) and patchy saturation (Equation
4.16). Figure 4.9 demonstrates the result for the range of weighting factors. |
calibrate the saturations extracted from the seismic data with the workflow just

described, by comparing them with known saturation as a well. Eventualy, |

93



adopt 0.5 as the weighting factor to compute the averaged saturation of three

fluidsin the case study.
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Figure 4.9: The calculated results of fluid saturation using different fractions of the
saturation scale: homogeneous saturation represented in Equation 4.15 and patchy
saturation given in Equation 4.16. For all columns, the thin lines represent the fluid
saturation by well-log analysis, whereas the thick lines with open circles correspond
to the results derived from seismic-data analysis.

Figure 4.10 shows the resultant fluid saturation from the seismic data analysis
compared to the fluid saturation by well-log analysis. The erroneous spikes at 2465m
and 2540m are induced by the skewed density input derived from miscalculations in the
elastic-impedance analysis (Figure 4.13). In addition, a subtle problem is that because of

the seismic resolution, the low water saturation at very top part of the reservoir is not
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visible. However except for these portions, the overall result of the calculation of fluid
saturation from seismic data demonstrates good agreement to the well-log analysis. The
most points from the well-log analysis fall within 0.15 deviations of the seismic analysis
result.

| adopt the fluid saturation from the seismic data for the portion of the reservoir with
sandstone volume higher than 50% and for porosity higher than 10%. The purpose of
these thresholds is to eliminate unreasonable saturations derived from the shaly sequence
due to the mismatch between lithology and the averaged sandstone properties. Likewise, |
dispose of the portion with very low porosity, where Gassmann’s equations are extremely

sensitive to the pore fluids, and fluid changes are not likely to occur.
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Figure 4.10: The resultant fluid saturation for Well A obtained by solving the
simultaneous equations. For all columns, the thin lines represent the fluid saturation
by well-log analysis, whereas the thick lines with open circles correspond to the
results derived from seismic-data analysis. The dashed orange lines show 0.15
deviations from the seismically derived saturation. The erroneous spikes at 2465m
and 2540m are induced by the skewed density input derived from the miscal culations
in the elastic-impedance analysis.
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4.7 Sensitivity analysis

Before applying the workflow to actual seismic data, | discuss the sensitivity analysis

of the input parameters.

First, | generate a smple rock model with the average grain and fluid properties of the

target field summarized in Table 4.2. Assuming the 100% water-saturated Vp and Vs are

3.0 km/sec and 1.58 km/sec, respectively, | calculate the exact values of Vp, Vs and p for

the fluid-saturation profile presented by the solid lines in Figure 4.11, using Gassmann’s

equation. Then, | employ Vp, Vs and p as inputs for my workflow, with an altered

parameter to retrieve the fluid saturation. This practice corresponds to the application of

the workflow with a misestimated parameter, where the discrepancy between the

resultant saturation and the initial model shows how sensitive the altered parameter is to

the resultant saturation from the workflow.

Table 4.2: The parameters to generate amodel for sensitivity analysis.

Bulk modulus | Shear Modulus Density
(GPa) (GPa) (glem®)
Average grain 38.13 34.93 2.67
Solid phase (fraction=0.9)
P Clay 23 8 2.58
(Total solid=0.8) (fraction=0.1)
Quartz 37 44.73 2.65
Water 2.7416 1.0038
Fluid phase Ol 0.7637 0.7136
(Porosity=0.2)
Gas 0.1217 0 0.2865
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4.7.1 Fluid satur ation scale

The left three columns of Figure 4.11 compare the inversely calculated fluid

saturation to the initial model. | assumed 100% patchy saturation for the initial model in

this case. The triangles represent the saturation retrieved by my workflow with a 100%

patchy saturation scheme in the inverse calculation. The circles show the result with 99%

patchy saturation and the crosses show the result with 98% patchy saturation.
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Figure 4.11: The sensitivity analysis of the fluid-saturation scale to the result of the
workflow. The solid lines are the fluid saturation of the initial model. The left three
columns represent the calculation results for the initiadl model of 100% patchy
saturation. | used the following schemes of saturation scale in the inverse
calculation: 100% patchy saturation for the triangles; 99% patchy saturation for the
circles; 98% patchy saturation for the crosses. The right three columns show the
calculation results for the initial model of the equally mixed saturation-scale schemes.
| employed the following schemes in the inverse calculation: 100% patchy saturation
for the triangles, 50% patchy saturation and 50% homogenous saturation for the
circles, 100% homogenous saturation for the crosses.
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Two important observations from these results are that (1) the exact fraction of the
saturation scale in the inverse calculation does not give the best match to the initial
model, and (2) all the calculation results demonstrate more errors in the portion of higher
gas saturation. In this case, the circles match the best to the initial model.

In the right three columns in Figure 4.11, | show the calculation results of my
workflow for the initial model of the equally mixed homogeneous saturation and patchy
saturation. The triangles represent the calculation result with a 100% patchy saturation
scheme in the inverse calculation; the circles correspond to the result with the equally
mixed fluid saturation; the crosses represent the result with 100% homogeneous
saturation. Again we recognize that the exact fraction of the saturation scale is not
necessary to obtain the optimal result. In addition, the largest disagreement between the
calculation result and the model is observed at the top of the sequence, where the gas
saturation is the highest.

These disagreements are induced by the steps 10 and 11 discussed in section 4.6.
Since the bulk modulus and density of gas are very small relative to those of liquids, the
inverse matrix calculation is dominated by the gas terms, and the resultant saturation is
distorted more where the gas saturation is higher. Furthermore, in the case of a mixed
scheme of fluid saturation scales, we need to solve Equations 4.15 and 4.16 separately
after dividing the total bulk modulus into the portions of homogeneous saturation and
patchy saturation. However, in practice, we never know the fractions. Therefore, | am
solving the saturation with one scheme for the total bulk modulus, and averaging the
results afterwards. This method gives a good approximation, but it is difficult to obtain

the exact saturation. The best way to obtain the optimal result with this workflow is to
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calibrate the calculation result with the well-log analysis result first, for determining the
weighting factor discussed in the step 12 in section 4.6.
For further discussions, | use the same initial model as the left three columns in

Figure 4.11 and adopt the circles in those columns as the base case of the workflow.

4.7.2 Velocity and bulk density

Figure 4.12 shows the sensitivity analysis of velocity and bulk density. In the left
three columns | present the result of velocity sensitivity, where the triangles are obtained
from the inverse calculation with Vp and Vs, 5% lower than the initial model; the crosses
show the calculation result with Vp and Vs, 5% higher than the model. In case of the
lower velocity assumption, we observe higher errors near the bottom, where the
workflow calculates some degree of oil saturation due to the lower-than-actual bulk
moduli derived from the lower velocity. However, the saturation in the remaining
portions stays almost the same,since the altered velocity cannot be compensated by the
change in water saturation when the fractional oil saturation exceeds 0.5.

The influence of misestimated density on the resultant saturation is more severe. The
right three columns in Figure 4.12 present the sensitivity analysis of density. | obtain the
triangles using a 1% reduced density for the workflow; the crosses correspond to a 1%
increased density. We observe that the deviation from the base case for the density
sensitivity is much higher than that of the velocity sensitivity. Furthermore, the influence
of the altered density is aimost equal for the resultant saturation of oil and gas, but
smaller for the water saturation. From the discussions above, we notice that the

estimation of density is more important for calculating the appropriate fluid saturation,
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and a 1% error in the density value induces a miscalculation of fluid saturation about 0.3.
In addition, density is the most difficult property to determine from the seismic data.
However, in practice, the density obtained from the elastic-impedance anaysis is the
average value of an interval, corresponding to the seismic wavelength. Therefore, | obtain
areasonable value as long as the density value stays in the range of the local perturbation

of the corresponding well-log data.
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Figure 4.12: The analysis of sensitivity of the velocity and bulk density to the result of
the workflow. The solid lines are the fluid saturation of the initial model. The left
three columns show the sensitivity analysis for velocity. The circles represent the
base case; the triangles present the resultant saturation calculated from the workflow
with 5% lower Vp and Vs as inputs; the crosses represent the saturation calculated
from the workflow with 5% higher Vp and Vs. The right three columns show the
sensitivity analysis of density. The circles correspond to the base case; the triangles
present the saturation calculated using the workflow with 1% lower density; the
crosses represent the calculation result from the workflow with 1% higher density.
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Figure 4.13 shows the Vp, p and Vs from the elastic-impedance analysis discussed in
Chapter 3. The estimated density in the dashed red line in the middle column is well
controlled in the perturbation of the well log in the blue line, except at several depth
points. The most prominent error is observed at 2500m, but thisis a shaly portion that is
100% water-wet. Besides it, 2465m and 2540m exhibit higher deviation from the well log.
We notice that the spiky miscalculations of the fluid saturation in Figure 4.10 at the same

depth points are derived from the erroneous estimations of density.

2360 T 2360 2360 = T
2380 = B 2380 B 2380 - B
= —
s
2400 ' B 2400 B 2400 - = B
il B
—
2420 - 2420 - 2420 - - -
~
2440 B 2440 B 2440 - -
w = w w0
@ — @ 3 =
o o o
= = = 3
£ 2460 3 4 g 2460 4 g ae0- -
e = ey < B
= ES Es %
o — o o F]
a a 3 »
2480 B 2480 B 2480 - = B
\ = A
-
2500 - B 2500 . 2500 s s
Y
2520 |- E 2520 B 220 | g — R
\ 5
2540 B 2540 B 2540 - A B
— 2
2560 L -~ 1 2560 1 L L L 2560 L = .
) 25 3 35 4 2 22 2.4 26 2.8 3 05 1 14 2 25
Vp (kmisec) Rho (gicc) Vs (kmisec)

Figure 4.13: The estimated Vp, p and Vs by the elastic-impedance analysis discussed in
Chapter 3. The blue lines represent the actual well logs; the dashed red lines show
the results of the seismic-data analysis. Note that most points on the red lines are
within the local perturbations of the well logs.
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4.7.3 Porosity and shale volume

Porosity and shale volume are determined from the calculations using the velocity
and density derived from the elastic-impedance analysis. Thus, in general, the range of
estimation errors for porosity and shale volume are dlightly higher than that of the
velocity and density themselves. Figure 4.14 shows the sensitivity analysis for porosity
in the left half and for shale volume in the right half. The sensitivity analysis of porosity
shows a result similar to the sensitivity analysis of density, but the deviation from the
base case is about 1/6 of the result for density in Figure 4.12. In the case study in this
chapter, | calculate porosity directly from density using

¢=-0.5401p +1.4350. (4.17)

Therefore, when | underestimate the density, the corresponding porosity will be
higher than the actual value. The effect of lower density is opposite to that of higher
porosity on the saturation calculated by the workflow. This relation compensates the
influence of the erroneous input of density. In the left three columns in Figure 4.14, the
triangles represent the saturation calculated by the workflow with 3% smaller porosity;
the crosses represent the calculation result from the workflow with 3% higher porosity.

The workflow is less sensitive to the misestimation of the shale volume, as shown in
the right half of Figure 4.14. The triangles represent the result of the workflow assuming
no clay, which is equivalent to a 100% reduction of the shale volume from the initial
model (reduce from 0.1to 0.) Likewise, the crosses are obtained from the workflow with
a 100% increased shale volume from the initial model. Both cases demonstrate only
small deviations from the base case. The result indicates that 100% errors in the

estimation of shale volume result in only about 0.1 change in the resultant fluid saturation.
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Figure 4.14: The anaysis of porosity and shale-volume sensitivity to the result of the
workflow. The left half shows the sensitivity analysis of porosity: the triangles are
the result of 3% smaller porosity; the crosses are the result of 3% higher porosity.
The right half shows the sensitivity analysis of shale volume: the triangles represent
the result of 100% reduced shale volume; the crosses represent the result of 100%
higher shale volume.

4.7.4 Fluid and solid properties

The bulk moduli, shear moduli and densities of fluids and solids are determined based
on the laboratory measurements. The left half of Figure 4.15 shows the sensitivity
analysis of the fluid properties. | obtain the asterisks by rounding the fluid parametersin
Table 4.2 to the first decimal point in the workflow. This precision is sufficient to derive
the appropriate saturation as shown in Figure 4.15.

The right haf of Figure 4.15 exhibits the sensitivity of the solid properties. The

asterisks are derived from the workflow with the properties of quartz, instead using the
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properties of the average mineral of the target reservoir. The maximum deviation from
theinitial model is about 0.16 at the bottom, where the formation is 100% water saturated.
As shown in Figure 4.6, the properties of quartz is located out of the chart for this case-
study dataset, therefore, the expected errors for most points in this chart are much smaller
than this extreme case.

In addition, the triangles are obtained by the workflow using Castagna’'s regression
between Vp and Vs asfollowsin step 4:

Vs=0.804Vp-0.856. (4.18)
The water-saturated Vp and Vs of the initial model are determined following Han's
regression as shown below:

Vs=0.79Vp-0.79. (4.19)

Using other relations between Vp and Vs for the workflow has a similar effect to
employing inappropriate solid properties. To avoid the occurrence of such errors, we
need to determine the best relation between Vp and Vs from laboratory measurements
and/or well-log data.

We need many kinds of input parameters to derive the fluid saturation of a reservoir
from the seismic data. Each parameter shows different behaviors and degrees of
sensitivity to the workflow. Thus, it is useful to calculate the saturation using several
different schemes of input parameters. Nevertheless, since the combined effect of all
parameters is difficult to estimate, matching the result to the well-log analysis is the most

effective way to obtain the optimal calibrations of the input parameters.
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Figure 4.15: The sensitivity analysis of the fluid and solid properties to the result of the
workflow. The left half shows the sensitivity analysis of fluid properties. the
asterisks represent the fluid propertiesin Table 4.2 after rounding to the first decimal
point in the workflow. The right half shows the sensitivity analysis of solid
properties: the triangles represent the pure quartz assumption for the grains; the
asterisks represent Castagna’ s regression of Vp-Vs instead of using Han's regression.

For this matching process, optimizing the weighting factor for mixing the two fluid
saturation scales, discussed in the step 12, is the most practical way to control the overall

profile.

4.8 Implementation of the workflow on time-lapse seismic

| apply the workflow to a time-lapse seismic dataset from an actual producing oil
field. The target reservoir is a blanket sandstone deposited under a braided-river

environment in the early Jurassic. There are two vintages of seismic data available,
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which were acquired in 1997 and 2001. Each set consists of three angle stacks, for which
| used the elastic impedance to derive Vp, Vs, p and shale volume in Chapter 3.

First, I show a comparison of the time-lapse seismic data in Figure 4.16. The top
section represents an east-west line from the 1997 data, and the bottom section
corresponds to the same line from the 2001 data. The two data sets are processed in a
sequence specifically designed to match the time-lapse seismic. The red line in the
sections is the interpreted horizon of the near top reservoir, and the black trace indicates

the sonic log of Well A, which isavertical well drilled in this section.
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Figure 4.16: A comparison of the time-lapse seismic data for a case study. The thin red
horizon represents the near top reservoir. The black trace indicates the sonic log of
Well A. We observe a dight change in seismic amplitude along the horizon at the
down flank, but it is impossible to quantitatively discuss the fluid displacement from
the change.
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Comparing two near-stack sections, we observe dight changes in amplitude in severa
portions, especially around the horizon at the down flank of the tilted structure. However,
it is impossible to quantitatively evaluate the fluid displacement from the change in
amplitude.

Another way to compare time-lapse seismic in terms of fluid displacement is to
calculate the amplitude difference between the near stack and far stack. Since Poisson’s
ratio is a good indicator of the change in formation fluid, the amplitude difference often
provides information of the fluid change. Figure 4.17 exhibits the comparison of the

amplitude difference: the top section for 1997 and the bottom section for 2001.
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Figure 4.17: A comparison of the time-lapse seismic data in the amplitude difference
between the near and far stacks. We observe a subtle change in the amplitude
difference aong the horizon at the down flank, but there is no way to discuss the
fluid displacement quantitatively.
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As in Figure 4.16, we observe subtle changes in the amplitude difference aong the
horizon at the down flank, but still cannot discuss the fluid displacement in a quantitative
way.

Next, | show the oil saturation section derived from the angle stacks through my
workflow. Thetop of Figure 4.18 represents the oil saturation section calculated from the
seismic data acquired in 1997, and the bottom section is the section for the 2001 seismic
data. | limit the calculation area within the reservoir so we only see the result inside the
reservoir. Comparing the two sections, we now clearly recognize the fluid displacement.
In the upper half for the down flank, there were several pockets of higher oil saturationin

red in 1997.
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Figure 4.18: A comparison of the oil-saturation sections calculated from time-lapse
seismic data: the top represents 1997; the bottom represents 2001. We observe (1)
the clear reduction of oil saturation near the top reservoir at the down flank and (2) a
big body of bypassed ail in green in the middle of the reservoir. The color code is
fractional oil saturation calculated according to my workflow.
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In contrast, al such higher oil saturation pockets have disappeared in the oil
saturation section of 2001. The two sections explicitly demonstrate that (1) oil in the top
subunit of the reservoir a the down flank was effectively produced in 4 years of
production, and (2) a big body of high oil saturation, shown in green in the middle of the
reservoir, remains as a bypassed oil accumulation, even in 2001. In addition, the flat
bottom of the high oil saturation in a sand body ranging from crossline numbers 6046 to
6096 at 2440 msec corresponds to the flat spot in the seismic sections in Figure 4.17.
This agreement proves the validity of the workflow.

Figures 4.19 and 4.20 show the saturation of gas and formation-water, respectively.
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Figure 4.19: A comparison of the gas-saturation sections calculated from time-lapse
seismic data: the top represents 1997; the bottom represents 2001. We observe the
reduction of gas saturation near the top reservoir at the down flank. The color code
isfractional gas saturation from 0 to 0.2.
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In the both figures, the top section represents the analysis result of the 1997 seismic data
and the bottom section corresponds to the result for the 2001 seismic data.

The highest gas saturation is less than 0.2 as shown in Figure 4.19, and the saturation
in 2001 is smaller than that in 1997. This saturation reduction is obvious at the down
flank, where the decrease in oil saturation is prominent as well.

The change in water saturation sections is the inverse image of the oil saturation. In
Figure 4.20, | use the inverse color code of Figure 4.18, therefore the image is almost
identical to Figure 4.18. Note that the spiky miscalculations discussed in Figure 4.10

appear as dots in the sections, due to the discontinuous nature of the errors.
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Figure 4.20: A comparison of the water-saturation sections calculated from time-lapse
seismic data: the top represents 1997; the bottom represents 2001. The image is
almost identical to Figure 4.18, since the gas saturation is almost negligible, and |
use the inverse of the color code from Figure 4.18.
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Finally, | apply the workflow to the whole volume of seismic data to calculate fluid
saturation from the time-lapse seismic dataset, and display the results in a perspective
view. Figures 4.21 and 4.22 show the oil saturation in 1997 and 2001, respectively. The
limits of the color code range from 1.0 at 127 to O at -128, in fractional saturation. Some
higher oil saturation bodies in red in the upper half of Figure 4.21 disappeared in Figure
4.22 after 4 years of oil production.

| display the gas saturation images from the time-lapse seismic data in Figures 4.23
and 4.24. Likewise, Figures 4.25 and 4.26 show the water saturation calculated from the
time-lapse seismic. We can quantitatively detect the fluid saturation in a reservoir from
the seismic data by applying the new workflow discussed in this chapter; a sequence of
deterministic computations based on the known rock-physics theories.

An obvious question about the result is the reliability of the saturation derived from
the time-lapse seismic data. When | compare the lower left portion of Figures 4.21 and
4.22, | observe the location shift of higher oil saturation in red near the compass.
Similarly, patchy higher oil saturation portions in red around the center of Figures 4.21
and 4.22 are changing the locations. Moreover, in this area, overall oil saturation
increases after 4 years production in contrast to the reduction of oil saturation in the west
of the structure. The structure is atilted fault block dipping towards northwest; therefore,
it is possible to increase oil saturation in up-dip side, around the center of the figures.
However, when we consider the uncertainty in the resultant saturation, plus or minus 0.15
as discussed in Figure 4.10, the oil saturation in the up-dip side can be unchanged and the
reduction of oil saturation in the down flank may be more harsh: we need to aware of a

possible slide scale up to plus or minus 0.15 in saturation for the result of the workflow.
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Figure 4.21: The distribution of oil saturation derived from the seismic data acquired in
1997. The color codeisin fractional saturation from 1.0 at 127 to 0.0 at -128.
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Figure 4.22: The distribution of oil saturation derived from the seismic data acquired in
2001. The color codeisin fractional saturation from 1.0 at 127 to 0.0 at -128. Note
that some higher-oil-saturation bodies in red in Figure 4.21 disappeared after 4 years
of production.
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Figure 4.23: The distribution of gas saturation derived from the seismic data abdui red in
1997. The color codeisin fractional saturation from 1.0 at 127 to 0.0 at -128.
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Figure 4.24: The distribution of gas saturation derived from the seismic data acquired in
2001. Thecolor codeisin fractional saturation from 1.0 at 127 to 0.0 at -128.
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Figure 4.25: The distribution of water saturation derived from the seismic data acquired
in 1997. The color codeisin fractional saturation from 1.0 at 127 to 0.0 at -128.
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4.9 Conclusions

Combining several rock-physics analytic methods and transforms, | have established
aworkflow to obtain the fluid saturation in areservoir by processing seismic data.

First, the pressure change during oil production and the fluid saturation scale are
considered. | use the output from the flow simulator of the field as input for the analyses
of the pressure change and of the fluid saturation scale of the time-lapse seismic data. |
conclude that the pressure has less than 1% effect on the velocity. Thus, | neglect the
effect of pressure change in the case study. The fluid saturation scale is discussed in a
method similar to Sengupta et al. (2003); | generate time-lapse well-log data for the
control wells using theinitial oil saturation as an oil accumulation indicator.

Next, | caculate the average moduli of sandstone grains for the reservoir using
laboratory measurements. Then, | mix the properties of the average sand grain with a
clay according to the shale volume derived from the el astic-impedance analysis discussed
in Chapter 3. This process provides us the solid-phase properties for further analyses.
Given the solid properties and the properties of the formation fluids measured in the
laboratory, | demonstrate a deterministic workflow to calculate the bulk modulus and
density of the in-situ fluid in the reservoir from the seismic data. The workflow is
summarized in Figure 4.7.

Then | analyze the sensitivity of each input parameter. | find that the most sensitive
parameter is bulk density, which is the most unstable output in the elastic-impedance
anaysis. The best way to optimize the result of the workflow is to use the weighting

factor for mixing two different saturation scales to control the overall calculation result.
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For this process, we need to find the optimal weighting factor that matches the seismic
analysisresult to the fluid saturation derived from well-log analysis at well locations.

Finally, | apply the workflow to the time-lapse seismic data of an offshore oil field. In
the results, | show a clear image of the fluid displacement in the reservoir after 4 years of
oil production and delineate a remaining oil body. However, the estimated values of the
fluid saturation from the workflow are bearing the uncertainty ranging around plus or
minus 0.15 in this case study. Such uncertainty range will expand when the rock-frame
stiffness increases and the seismic data becomes more insensitive to the fluid in the
reservoir.

| demonstrate that we can enhance the potentia of rock-physics theories by carefully
choosing the input data. For the analysis of time-lapse seismic, integrating the
knowledge of geophysics, geology, and reservoir engineering very carefully is a key to

obtain successful results.
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Chapter 5

Exploring Vp-Vs relations. Approach
from effective medium theories

5.1 Abstract

Several empirical relations between Vp and Vs have been proposed for the lithologies
of oil and gas reservoirs. Although recent technology supplies us an improved sonic log
tool to measure Vs as well as Vp, often the Vs measurement is distorted due to the very
sensitive nature of S-waves to borehole conditions. In addition, the difficulty of picking
the first breaks of S-waves often makes the quality of the Vs log insufficient for seismic
analysis. On the other hand, the demand for Vs information is expanding since the Vp/Vs
ratio (or Poisson’s ratio calculated from the Vp/Vs ratio) is key to characterizing
subsurface lithology and/or estimating the formation fluids in the reservoir, by analyzing

the AVO response of the seismic data.
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In Chapter 5, I present a theoretical approach for understanding rock Vp-Vs relations
using the Hashin-Shtrikman bounds and effective-medium theories. To find the bounds
of the V'p/Vs ratio, I adopt the upper and lower Hashin-Shtrikman bounds of the mixture
of a rock and brine. For any mixture, the upper Hashin-Shtrikman bound corresponds to
the lowest Vp/Vs bound and the lower Hashin-Shtrikman bound is equivalent to the
highest Vp/Vs bound.

Then, I compare the Vp-Vs relations calculated by a model with tubular pores by
Mavko (1980) and a self-consistent inclusion model of spheroid pores by Berryman
(1995). 1 explore the Vp-Vs relations of the computed results in the crossplot domain
among Vp, Vs and porosity. The Vp-Vs trend of sandstone is represented better by the
model with tubular pores.

I discuss that the location in the crossplots is an indicator of the pore shape. I show
that a modified Reuss bound provides a good approximation of the Vp-Vs relation of a
rock comprised of grains, and that the upper Hashin-Shtrikman bound resembles

Castagna’s trend for carbonates.

5.2 Introduction

The most widely used empirical Vp-Vs relations have been published by Castagna et
al. (1993), for rock types including sandstone, mudrock, limestone and dolomite. In
general, Castagna’s regressions provide us reasonable results in terms of calculating Vs
from the measured Vp in most practical cases. Xu and White (1995) demonstrated a

method to determine the Vp-Vs relation of shaly sandstone by mixing two inclusion
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models with different aspect ratios, which represent the sandstone and shale portions.
Jorstad et al. (1999) compared the method by Xu and White (1995) to linear regressions
using a dataset from the North Sea. They concluded that the inclusion models need to be
calibrated well by well, whereas the simple regression tuned to the target wells provide
good prediction of Vs from the measured Vp in their data. However, there is no
systematic explanation why a linear regression works well in most cases.

One way to discuss the Vp-Vs relation is by deriving velocities using an effective-
medium theory. As quoted in Mavko ef al. (1998), the best bounds, defined as giving the
narrowest possible range in the velocity-porosity plane without specifying anything about
the geometries of constituents, are the Hashin-Shtrikman bounds. These bounds give us
the upper and lower limits of the data distribution for bulk and shear moduli as a function
of the volume fractions of mixing materials. I adopt the Hashin-Shtrikman bounds to

explore Vp-Vs relations for rock-fluid mixtures.

5.3 The Hashin-Shtrikman Bounds

The Hashin-Shtrikman bounds represent a geometrically defined mixture of two
materials, which are allocated outside and inside of concentric spheres. The spheres are
in various sizes so that the visual image of the upper bound is randomly sized spherical
pores in a chunk of rock. The lower bound can be visualized as variously sized spheres
suspended in another material. However, since the lower bound is identical to the Reuss
bound when the shear modulus of one of the two materials is 0, the lower bound can be

considered as horizontally stacked layers of the two materials.
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The upper (+) and lower (-) Hashin-Shtrikman bounds are given by the following:

K* =K, + | /> YR
<z<2—z<l>*fl("l+s“lj
: /) (5.1)

=, +
# # 1 n 2f1(K1+2/u1)

— 4
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where
K is the bulk modulus of material 1,
K> is the bulk modulus of material 2,
A 1s the shear modulus of material 1,
b s the shear modulus of material 2,
/1 1s the volume fraction of material 1,

/> 1s the volume fraction of material 2.
In addition, I calculate the density of a mixture of the two materials as follows:

Poax = J100+ o9, - (5.2)

Then, I compute Vp, Vs, porosity (=volume fraction of a fluid) and density for the
Hashin-Shtrikman bounds of a mixture.

Now, I calculate the upper and lower Hashin-Shtrikman bounds for brine-saturated
sandstone. But the shear modulus of brine is 0; thus, I obtain 0 for the shear modulus of
the mixture. This means Vs is 0 for the lower bound, except for the 100% solid point. To
obtain a practical limit of the lowest Vs, I investigate the laboratory measurement of loose
sand by Zimmer (2004). He measured the Vs for brine-saturated Galveston beach sand at
critical porosity of 0.4336 under a confining pressure of 0.1 MPa and obtained Vs=0.2
Km/sec. I employ this velocity as a realistic lowest Vs at critical porosity and calculate

the equivalent shear modulus, £~=0.09 GPa. Then, to obtain V/p=1.5 Km/sec at the critical
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porosity, the bulk modulus is determined to be K=4.3575 GPa. For future discussions, I

assume the critical porosity to be 0.4. Table 5.1 summarizes the parameters used to

calculate the Hashin-Shtrikman bounds for sandstone and shale.

Table 5.1: Summary of the parameters used to calculate the Hashin-Shtrikman bounds of

sandstone.

Material Bulk modulus (GPa) | Shear modulus (GPa) Dens‘gy
(g/cm”)

quartz 37 44.73 2.65

clay 23 8 2.58
brine 2.7416 0 1.0038

mixture at critical 0.6psolid +

porosity (=0.4) 4.3575 0.09 0.4Pbrine

Figure 5.1 presents the resultant bounds in the Vp-porosity plane on the left and the
Vs-porosity plane on the right. The solid lines represent the upper Hashin-Shtrikman
bound and the dashed lines represent the lower Hashin-Shtrikman bound. All bounds in
following figures are displayed with this convention. Then, I convert all the bounds into
the Vp-Vs plane as shown in Figure 5.2, where we observe the upper Hashin-Shtrikman
bounds and the lower Hashin-Shtrikman bounds. Note that the upper Hashin-Shtrikman
bound corresponds to the lower Vp/Vs bound, and vice versa. The black lines indicate
two constant values for Vp/Vs: the dashed line corresponds to 1.5 and the solid line
represents 2.0. Comparing the bounds to these Vp/Vs lines, we recognize that the upper
Hashin-Shtrikman bound is the lowest Vp/Vs bound and the lower Hashin-Shtrikman
bound is the highest V'p/Vs bound for any mixtures. I plot the regression line by Castagna

et al. (1993) for brine-saturated sandstones in the yellow circles in Figure 5.2.
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Figure 5.1: The upper and lower Hashin-Shtrikman bounds in the Vp-porosity plane on
the left and the same bounds in the Vs-porosity plane on the right. The green lines
represent a quartz-brine mixture, and the blue lines correspond to a clay-brine
mixture. The solid lines correspond to the upper Hashin-Shtrikman bounds and the
dashed lines correspond to the lower Hashin-Shtrikman bound.

T T T T
] -
‘ s
3 rd
: -’
: -
i s
Vi
6 // —
5
o
Lo O
5 0.9 -
@ i
ol e
® .
- il
8 Wit
B A T O'(// ....................................... -
E O -
X v
= 2 o7 -
:‘? o @ . //
-
8 P o -~
o 3 L f z o
= - AT
o o s
/ ”
7 -~
7 -
J: v
y -
2= ¥ - 7 B
/ i
f = -
: -,
: ’
‘ e
i //
1_ T T S S T S T T T il
7
s
Pl
L
/ :
74
‘a
o i i | | | | i I I
0 05 1 15 2 25 3 35 4 4.5 5

S-Velocity (kmisec)

Figure 5.2: The upper and lower Hashin-Shtrikman bounds in Vp-Vs plane. The green
and blue lines are equivalent to those in Figure 5.1. The black lines indicate constant
Vp/Vs: the dashed line is Vp/Vs=1.5; the solid line corresponds to Vp/Vs=2. The
yellow circles represent the regression line for brine-saturated sandstones by
Castagna et al. (1993). Note that Castagna’s regression is located between the solid

green line and the solid blue line.
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Castagna’s empirical regression locates in between the upper Hashin-Shtrikman bound
for quartz-brine mixture and the upper Hashin-Shtrikman bound of a clay-brine mixture.
The intuitive interpretation of this result is that the regression line by Castagna represents
intermediate trends between the upper Hashin-Shtrikman bounds for quartz-brine and
clay-brine mixtures in both the Vp-porosity and Vs-porosity planes, therefore the resultant
Vp-Vs trend also falls between those end members in the Vp-Vs plane. In general, most
sandstones fall between the upper Hashin-Shtrikman bounds of quartz-brine and clay-
brine mixtures. Castagna’s regression is one of the best averaged Vp-Vs trends for brine-

saturated, quartz-dominated sandstones.

5.4 Vp-Vs relation of sandstone

5.4.1 Stiff-sand and soft-sand models

I have demonstrated the correlation of the locations for the Hashin-Shtrikman bounds
in the velocity-porosity plane and in the Vp-Vs plane. Next, I explore the relation of data
locations in the two planes for the soft-sand model and the stiff-sand models introduced
by Dvorkin and Nur (1996). They theoretically derived these effective-medium models ,
based on the contact stiffness of a sphere pack, which are derived from the Hertz-Mindlin
model. The soft-sand model is given in a form of a modified lower Hashin-Shtrikman

bound as follows:
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where
K is the bulk modulus,
4 is the shear modulus,
@ 1s the volume fraction of porosity,
v is the Poisson’s ratio,
n is the coordination number, the number of average contacts per grain,
P is the differential pressure in MPa,

Fd is the fudge factor to control shear contact stiffness, > 1 to reduce the stiffness.

The stiff-sand model is a modified upper Hashin-Shtrikman bound, expressed below:
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where Kiv and z41v are the same as in Equation 5.3.

Employing the resultant bulk modulus and shear modulus of a dry rock from
Equations 5.3 and 5.4, I calculate the brine-saturated V'p and Vs as a function of porosity,
using Gassmann’s equation. Figure 5.3 exhibit a series of soft and stiff sandstone models.
I used 0.1 MPa as a confining pressure and 6 for a coordination number in the
calculations. In addition, to fit the results within the Hashin-Shtrikman bounds, I applied
a porosity-dependent velocity scale as detailed below:

scaled velocity = (1-0.3 @ @erisica)velocity, where ¢ < @erisicar - (5.5)
This velocity scale reduces Vp and Vs rapidly as porosity increases, but keeps Vp/Vs ratio
of the model trends since I apply exactly the same scale to both Vp and V's.

In Figure 5.3, the dashed magenta lines represent the stiff-sand models with a fudge
factor (defined in Equation 5.3) of 1.0; the dashed cyan lines indicate the soft-sand model
with the same fudge factor. Next, I change the fudge factor to 0.2, and obtain the red
solid lines, which represent the stiff-sand model; the black lines show the soft-sand model
with this fudge factor. For each different setting, I vary the solid-phase composition from

100% quartz to 100% clay with 20% exchange steps in this two-mineral system.
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Figure 5.3: Stiff-sand models in the solid red lines and the dashed magenta lines; soft-
sand models in the solid black lines and the dashed cyan lines, based on the Hertz-
Mindlin contact stiffness. The red solid lines and the black solid lines are calculated
with a fudge factor=0.2, whereas the dashed magenta lines and the cyan lines are
calculated with a fudge factor=1. Each set has five lines, ranging from 100% quartz
at the top to 100% clay at the bottom. I applied a porosity-dependent velocity scale.
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Figure 5.4: Vp-Vs plot of the stiff-sand and soft-sand models in Figure 5.3. The black
lines indicate constant Vp/Vs: the dashed line for Vp/Vs=1.5 and the solid line for
Vp/Vs=2. The yellow circles represent the regression line for brine-saturated
sandstones by Castagna ef al. (1993).
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Consequently, there are five lines for each setting. These lines range from pure
quartz at the top to pure clay at the bottom in the figure.

Next, I transform all the lines into the Fp-Vs plane as shown in Figure 5.4.
Comparing this chart to the previous figure, we recognize that if a trend locates close to
the upper Hashin-Shtrikman bound in the Vp-porosity plane, the trend will be situated
near the upper Hashin-Shtrikman bound in the Vp-Vs plane as well. I interpret this result
in relation to the pore shape. For any fixed porosity, a higher V'p close to the upper
Hashin-Shtrikman bound means that the pore shape is almost spherical, which is the
stiffest pore shape of a mixture. This pore shape gives us the lowest Vp/Vs ratio for the
mixture due to its high Vs value. In contrast, the lower Hashin-Shtrikman bound is
coincident with the Reuss bound, when the shear modulus for one material of a mixture is
0. This fact indicates that very low Vp near the bounds, a rock texture is described by a
scheme of a horizontal stack of two materials. Approaching the Reuss scheme of a
mixture of solid and fluid, Vs reduces rapidly toward 0. As a result, Vp/Vs increases
toward the maximum value at the lower bound of the mixture.

From the discussions above, we recognize that location relative to the Hashin-
Shtrikman bounds is a good tool to investigate Vp-Vs relations of a rock. Since most
sandstones fall between the upper Hashin-Shtrikman bound of a quartz-brine mixture and
the upper bound of a clay-brine mixture, I evaluate a general trend of sandstone using the
upper Hashin-Shtrikman bound.

I gradually vary the constituents of the solid phase from 100% quartz to 100% clay in
10% exchange steps. Next, I employ Hill’s average to calculate the elastic moduli of a

dry rock, and I brine-saturate the rock using Gassmann’s equation. I adopt the same rock
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properties as in Table 5.1. Eventually, I calculate the upper Hashin-Shtrikman bounds for
the mixtures with the solids of the different volume fractions and brine.

Figure 5.5 displays the result of this practice. The data are color-coded by the
calculated Vp/Vs ratio. As we expect given the previous discussions, the data clearly
show that the higher our Vp is, due to the higher quartz content, the lower Vp/Vs ratio we
obtain at a fixed porosity. Note that when I take a fixed Vp, the Vp/Vs ratio reduces as it
approaches the upper Hashin-Shtrikman bound at the highest porosity allowed for the
mixture. In this sense, Vs is not a function only of Vp, but is influenced by porosity as
well. Having Vp, Vs, porosity and clay volume for all the points, I plot the same data in
the Vp-Vs plane, color-coded by porosity as shown in Figure 5.6. I regress all the points
to derive the linear equation of Vs as a function of V'p and I get the following relation:

Vs =0.7937Vp—0.7890. (5.6)

This result remarkably resembles Han’s regression (1986), which is based on
ultrasonic laboratory measurements:

Vs =0.7936Vp—0.7868. (5.7)

Both equations cross validate each other. Furthermore, these regressions are virtually
equivalent to the regression by Castagna et al. (1993) below:

Vs = 0.80427p—0.8559. (5.8)
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Figure 5.5: The calculation results of the upper Hashin-Shtrikman bound for the mixtures
with different quartz contents. I use Hill’s average to calculate the dry-rock elastic
moduli, ranging from 100% quartz to 100% clay in 10% intervals. All data are
brine-saturated using Gassmann’s equation.

7 0.4
0.35
6 —
0.3
5 —
= —0.25
4 _
i -0.2
3 —
- —0.15
2
1
0” i I i i i
[} 05 1 15 2 25 3 35 4 45

S-Velocity (kmisec)

Figure 5.6: Vp-Vs plot of the data in Figure 5.5, color-coded by porosity. Note that I
adopt critical porosity at 0.4. We recognize iso-porosity trends.
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5.4.2 Effective elastic moduli of arock with tubular pores

Mavko (1980) discussed the effective elastic moduli of a crystalline rock with
randomly oriented tubular melts along the mineral junctions. When a volume fraction of
the melts is large, this situation is similar to a rock comprised of grains with connecting
tubular pores. I adopt the two models with the extreme shapes of the cross section of
each tube. The shapes are calculated in the x-y plane by the following equations using

&0 and &=o0:

x = R(cosO + ! cos20),
&

(5.9)

y=R(—sinf + ! sin 260),
2+¢

where, R is a constant and the @ varies from 0 to 2z. The shape for &0 is a three-
sided hypotrochoid, whereas the shape for &= is a perfect circle. Then the effective

moduli of a dry rock for &=0 are expressed as below:

+
Ksolid Ksolid 3(1 - 2vsolid )

L_ 12 {40—261/@0,}
ludry lusolid lusolid 1 5

1 1 ¢ |:13 B 4Vsolid B 8Vsolid2 }

(5.10)

where
K is the bulk modulus,
4 1s the shear modulus,
¢ is the volume fraction of porosity (=volume fraction of melt),
vis the Poisson’s ratio.
However, the formulation above is not self-consistent, consequently the resultant

moduli are high all way down to 100% porosity. Assuming that the moduli of a dry rock
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are close to the moduli of the solid, we can derive a pseudo-self-consistent version of the
equations for the lower porosity range (personal communication with Dr. Mavko.) For
the derivation, first we replace the solid modulus in the second term on the right side with

the modulus of the dry rock and we get

1 _ 1 + ¢ 13 B 4Vsalid - 8Vsolid ’
K, Ko K 3 (1 =2V ) ’

ry
1 1,2 {40—26%@

/udry /usolid /Udry 1 5

dry

(5.11)

Next, we move the term to the left side and rearrange the equations to obtain the

expressions below:

13-4v_, -8y °
K =K 1_ solid solid ,
dry solld( ¢|: 3(1 _ 2V501id ) :|J

40-26v,,
Hany = Holia (1 - ¢{Tbld}j

Using the calculated moduli of a dry rock made of 100% quartz, I compute the

(5.12)

velocity of the rock in a brine-saturated condition using Gasmann’s equation. Figure 5.7
shows the results in the Vp-porosity and Vs-porosity planes. The red circles represent a
rock with tubular pores which have circular cross section; the purple triangles represent a
rock with tubular pores for which the cross section of the tubes is a three-sided
hypotrochoid. The trend curves in the planes are similar to the lower Hashin-Shtrikman
bounds.

Figure 5.8 shows the same data in the Vp-Vs plane. The trend of the red circles is
very close to Castagna’s regression for sandstone in the yellow circles. This result
suggests that the general trend of sandstone is represented well by the tubular pore model

with circular cross sections.
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Figure 5.7: The trends of a rock with tubular pores by a modified Mavko’s equation in
the velocity-porosity plane. The red circles represents that the cross section of tubes
with perfectly circular cross sections, and the purple triangles represents tubes with
three-sided hypotrochoid cross sections.
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Figure 5.8: The trends of a rock with tubular pores by a modified Mavko’s equation in
the Vp-Vs plane. The red circles represent tubes with perfectly circular cross
sections, and the purple triangles represent tubes with three-sided hypotrochoid cross
sections. Note that the trend of the red circles is very close to Castagna’s regression
for sandstone in the yellow circles.
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5.4.3 Self-consistent inclusion model of spheroid pores
Kuster and Toksoz (1974) derived expressions for the effective moduli of a mixture

consisting of a host rock and inclusion materials as follows:

c e VKA, 3) & i
(KKT Km/(KKT +4ll'lm /3) ;xl (Kl Km) ’
(s — 11,) (z, *f;) =D, — 1, JO" (5.13)

where
K7 is the effective bulk modulus of the mixture,
K, is the bulk modulus of the host rock,
1k is the effective shear modulus of the mixture,
Ly 18 the shear modulus of the host rock,
x; 1s the volume fraction of the ith inclusion,
K; is the bulk modulus of the ith inclusion,
1; 1s the shear modulus of the ith inclusion.
The coefficient P and Q™ are the scalars calculated by the aspect ratio of pores
(a=length of short semi-axis/length of long semi-axis; less than 1 for oblate spheroids)
and the properties of the constituents. I describe the calculation sequence for a two phase

mixture below:

pmizﬁ’
F2 (5.14)
Qmi:i+L+F4FS+F6F7_F8F9 .
F, F, F,F, ’

where,

136



3
FI:I+A{(2

L
3
+
S

N—

|

=
/N
0o | W
3

+

| o
S

|

| &
S
I\.—I

F, :1+A{1+%(m+n)—§(3m+5n)}+B(3—4R)
+§(A+3B)(3—4R)[m+n—R(m—n+2n2)],

F, :1+A{1—(m+37n]+R(m+n)}
A
F, :1+Z[m+3n—R(m—n)],
F :A{—m+R[m+n—§ﬂ+Bn(3—4R),
F, =1+ A[l+m—R(m +n)|+ B1—-n)3-4R),
F, = 2+§[3m +9n—R(3m +5n)|+ Bn(3 - 4R),
F, = A{I—ZR +%(R—1)+§(5R—3)}rB(l—n)(3—4R),
F, = A[m(R —1)— Rn]+ Bn(3 - 4R),
and

A:ll’li

/'lﬂ‘l

g LK _m)
3\K,, w4,

_ 3y,
3K, +4u,

b

2
(24

(3n-2),

m =
l-a?
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(1 -a
Berryman (1995) introduced a way to derive a self-consistent approximation of the

elastic moduli of the inclusion model by the iterative calculation that follows:
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N
in(Ki _K;c)P*mi =0,
i=1
N
in(:ui _:u;Cp*mi =0,
i=1

(5.15)

where
K *Sc is the self-consistent effective bulk modulus of the mixture,
,u*sc is the self-consistent effective shear modulus of the mixture.

The scalars P™ and Q™ are calculated by Equation 5.14, using the bulk and shear
moduli of a tentative result in the iterative computation, and updated in the each iteration
step. I set the program to terminate computation when the difference of two consecutive
calculation results is less than 10 times the solid modulus.

I use the properties of quartz and brine in Table 5.1 to calculate the velocity trends for
a rock whose pores have aspect ratios of 0.001, 0.01, 0.03, 0.06, 0.1, 0.2, and 1.0. Figure
5.9 shows the calculation results in the red lines. Likewise, Figure 5.10 shows the same
data in the Vp-Vs plane. Although the trends in the velocity-porosity plane are clearly
separated, the trends corresponding to the o higher than 0.06 are located very close to
each other in the Vp-Vs plane. Furthermore, none of the trends in the red lines resembles
Castagna’s regression, shown in the yellow circles. This result indicates that the self-
consistent model of the spheroid inclusions with fixed aspect ration is not appropriate to
predict the Vp-Vs trend of sandstone. According to the result of Xu and White (1995),
the original inclusion model by Kuster and Toksoz (1974) works well to describe the
trend of sandstone and shale. To estimate Vp-Vs relation of sandstone, the original
inclusion theory is much more effective than a self-consistent version of the model, when

we assume a fixed aspect ratio.
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Figure 5.9: The calculation results of a self-consistent inclusion model in the red lines.
The numbers indicate the aspect ratios of the pores used in the calculation.
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Figure 5.10: The same data as in Figure 5.9 in the Vp-Vs plane. Note that relative
position to the Hashin-Shtrikman bounds correlates to that in Figure 5.9. However,
the trends of a higher than 0.06 are not separable in the Vp-Vs plane.
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5.4.4 Comparison of thetheoretical trendswith laboratory measurements

To observe the validity of the effective moduli derived from theoretical models, I plot
the results of the tubular-pore model and the inclusion model with the laboratory
measurement by Han (1986). Figure 5.11 shows the model trends and the measurement
with a confining pressure of 5SMPa in the velocity-porosity plane. The laboratory data are
color-coded by the shale volume. I expand the Hashin-Shtrikman bounds in green and
blue to a critical porosity of 0.6 instead of 0.4 in this figure. The black solid line
corresponds to the red circles in Figure 5.7 and the black dashed line represents the
purple triangles in Figure 5.7. Comparing the two charts in Figure 5.11, we notice that
the data locations relative to the model trends are very consistent in both charts.

As shown in Figure 5.12, the data locations relative to the model trends are more
scattered in the Vp-Vs plane. Yet, we recognize the samples of higher shale volume in
reddish colors are plotted between the dashed and solid black lines in both Figures 5.11
and 5.14. A similar constraint cannot be obtained from the trend of the inclusion model.

It seems that the trends with curves similar to the lower Hashin-Shtrikman bound,
which is equivalent to the Reuss bound, provide us a better control of Vp-Vs relations of
sandstone.

Figures 5.13 and 5.14 display the same panels for Han’s data with a confining
pressure of 40MPa. I expected a better correlation of the relative locations for the data to
the model trends. However, the result is almost the same as the dataset at SMPa.
Moreover, in case of 40MPa, the reddish points tend to show higher velocity than the
solid black line in Figure 5.13, although the data stay between the two black lines in

Figure 5.14. This suggests that we need to modify the model for a higher pressure.
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Figure 5.11: Comparison of the trends from effective-medium models with the laboratory
measurement by Han (1986) with a confining pressure of 5SMPa. The measurement
data are color-coded by the shale volume.
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Figure 5.12: The same data as in Figure 5.11 in the Vp-Vs plane. Note that the data in
reddish colors are located in between the solid and dashed black lines, as in Figure
5.11.
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Figure 5.13: Comparison of the trends from effective medium models with the laboratory
measurement by Han (1986) at a confining pressure of 40MPa. The measurement
data are color-coded by the shale volume.
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Figure 5.14: The same data as in Figure 5.11 in the Vp-Vs plane. Note that the data in
reddish colors are located between the solid and dashed black lines, although the data
exhibit velocities around the solid black line in Figure 5.13.
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5.4.5Modified Reuss bound

Since the trend similar to the lower Hashin-Shtrikman bound seems to represent well
the Vp-Vs relation of sandstone. I generate a series of modified Reuss bounds to compare
with the laboratory data. In this practice, I adopt the upper Hashin-Shtrikman bound
calculated with the properties in Table 5.1. Then, I stretch it in the porosity axis to the
maximum porosity at 1. Therefore, the V'p and Vs at 100% porosity point are 1.5 km/sec
and 0.2 km/sec, respectively. Next, [ extract V'p and Vs at the porosity points 0.95, 0.90,
0.85, 0.80, 0.75, 0.70, 0.64, and 0.60 on the upper Hashin-Shtrikman bound. Employing
the recorded velocities, I calculate the modified Reuss bounds between the quartz-mineral
point and each extracted porosity point.

Figure 5.15 shows the modified Reuss bound in red with Han’s data: the solid circles
represent the data at SMPa confining pressure; the open circles represent the data at
40MPa confining pressure; both sets are color-coded by the shale volume.

First, most samples are located within the range of the red lines, the top red line
corresponding to the modified Reuss bound at 0.6 porosity, and the bottom red line
corresponding to the porosity point at 0.95. Second, in both charts, the sample locations
relative to the modified Reuss bounds are very consistent.

Furthermore, the same bounds in the Vp-Vs plane exhibit similarly good locations
relative to the samples, considering small measurement errors, as shown in Figure 5.16. 1
demonstrate the consistency of the locations among the three crossplot planes, when we

determine the appropriate properties of the end points for the bounds.
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Figure 5.15: Comparison of the trends of modified Reuss bounds with the laboratory
measurement by Han (1986): the solid circles represent the data at SMPa confining
pressure; the open circles are for 40MPa. The measurement data are color-coded by
the shale volume.
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of measurement data relative to the modified Reuss bounds are consistent with the
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color-coded by the shale volume.
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Note that since the location in the Vp-Vs plane is independent of porosity, the
selection of the end points of the bounds in the velocity-porosity plane is critically
important for comparing with measurement data. We obtain exactly the same locations
in the Vp-Vs plane, as long as the shapes of the bounds in the velocity-porosity planes
stay constant, even if the porosity range violates the reasonable limit of the mixture.
Furthermore, we have to be careful about the effect of saturation fluid. Any fluid more
compressible than brine pulls down the model trends toward the lower Hashin-Shtrikman
bound in the velocity-porosity plane. On the other hand, in the same case, the model
trends will move toward the upper Hashin-Shtrikman bound in the Vp-Vs plane because
V'p is more reduced than V.

Figure 5.17 compares the modified Reuss bounds with Castagna’s regressions for
sandstone in the yellow circles and the mudrock line in the cyan circles. The purple
asterisks show Han’s regression for sandstone from Equation 5.7.

As I discussed above, most sandstone is in the range of the red lines. Therefore, both
Castagna’s regression and Han’s regression are appropriate linear averages for sandstone
as shown in Figure 5.17. Moreover, the location of the mudrock line agrees with the
location of the shaly sandstone data in reddish colors in Figure 5.16. These consistencies
of my findings about the data locations in the three crossplot planes with the known Vp-
Vs relations prove the validity of my approach.

We recognize the stiffness of the pore, or the shape of pore, is a key factor controlling
the location in the velocity-porosity plane, so it controls the Vp-Vs relation. The stiffest
pore shape, a sphere, gives us the upper Hashin-Shtrikman bound, which is equivalent to

the lowest Vp/Vs trend in the Vp-Vs plane. For any sandstone, an inter-granular pore
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shape mimicking randomly oriented tubes exhibits a velocity trend between the upper and
lower Hashin-Shtrikman bounds. Moreover, the distribution is limited inside the range
between the red lines in Figures 5.15 and 5.16. Therefore, a linear regression can
represent well an averaged Vp-Vs relation for sandstone and shaly sand. When samples
consist of the higher shale volume, the regression line will move towards the top red line
in Figure 5.17, according to the trend location in the velocity-porosity plane. By contrast,
when samples have been highly cemented, we need to move the regression line down

closer to the bottom red line in Figure 5.17.

-~
T

P-Velocity (km/sec)
(4]
T

1 i
0 05 1 15 2 25 3 35 4 45 5
S-Velocity (kmisec)

0 I i I |

Figure 5.17: Comparison of the modified Reuss bounds in red with known Vp-Vs
relations. The yellow circles represent Castagna’s regression for sandstone; the cyan
circles represent Castagna’s mudrock trend; the purple asterisks correspond to Han’s
regression for sandstone.
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5.5 Vp-Vs relation of carbonates

I expand the stiffness assumption at the critical porosity point in Table 5.1 to

carbonates as well. Figure 5.18 shows the upper and lower Hashin-Shtrikman bounds for

a limestone-brine mixture in red and a dolomite-brine mixture in purple.

Table 5.2

summarizes the properties of calcite (mineral to compose limestone) and dolomite. In

general, carbonates do not display obvious grains, except grainstone facies of limestone.

Instead, the rock frame is rigidly connected as a matrix-supported scheme of the internal

texture. Consequently, the pore shape of carbonates is closer to a sphere or a fat ellipsoid

with a lower aspect ratio. Considering this stiff nature of pores in carbonates, I anticipate

the actual samples to fall in the area very close to the upper Hashin-Shtrikman bounds of

the carbonate-brine mixture.

Table 5.2: Summary of the parameters used to calculate the Hashin-Shtrikman bounds of

carbonates.
Mineral Bulk modulus (GPa) Shear modulus (GPa) Den51t3y
(g/cm’)
calcite 70.76 30.34 2.71
dolomite 80.23 48.77 2.87
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Figure 5.18: The upper and lower Hashin-Shtrikman bounds of carbonates in the Vp-
porosity plane on the left and the same bounds in the Vs-porosity plane on the right.
The red lines represent a limestone-brine mixture and the purple lines a dolomite-
brine mixture. The solid lines indicate the upper Hashin-Shtrikman bounds and the
dashed lines correspond to the lower Hashin-Shtrikman bounds.
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Figure 5.19: The upper and lower Hashin-Shtrikman bounds of carbonate-brine mixtures
in the Vp-Vs plane. The red lines represent a limestone-brine mixture and the purple
lines a dolomite-brine mixture. The red circles and purple squares represent
Castagna’s regressions for these lithologies. Note that Castagna’s regressions agree
with the upper Hashin-Shtrikman bound for the lithology.
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Figure 5.19 shows the V'p-Vs plots of the upper and lower Hashin-Shtrikman bounds
of the limestone and dolomite in Figure 5.18. The red circles represent Castagna’s
polynomial regression for limestone given in Equation 5.16, and the purple squares
represent Castagna’s linear regression for dolomite in the Vp range higher than 3.5

km/sec.

Vs = -0.055087p*+1.01677Vp-1.03049. (5.16)

Applying polynomial regression to the upper Hashin-Shtrikman bound of a

limestone-brine mixture, I obtain the expression below:

Vs = -0.0412Vp*+0.9202Vp-0.8888 . (5.17)

The result is very close to Castagna’s regression. Both equations cross-validate each
other.

Castagna et al. (1993) found that the empirical regression of a dolomite-brine mixture
is a linear line for the higher velocities, but the data in the lower velocity range were not
available for the regression. Therefore, the Vp-Vs relation of brine-saturated dolomite in
lower velocity range remains undefined. Based on the calculated data of the upper
Hashin-Shtrikman bound of the mixture, I derive a polynomial regression similar to that

of limestone, shown below:

Vs = -0.023Vp*+0.8452Vp-0.7609. (5.18)

The result coincides with the solid purple line in Figure 5.19, and the line agrees very

well with Castagna’s regression in the higher velocity range. In the higher velocity range,
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the Vp-Vs relation of dolomite-brine mixture seems to fit a linear trend, because the
Vp/Vs ratio of dolomite is smaller than that of calcite. However, the trend will curve in
the low velocity range, similar to the trend for limestone. The degree of the curvature for
the upper Hashin-Shtrikman bound in the Vp-Vs plane is controlled by the Vp/Vs ratio of
the mineral point; where the mineral point exhibits a Vp/Vs ratio closer to 1, the upper
bound becomes straight.

Tsuneyama et al. (2003) demonstrated a new trend for limestone, which represents
grainstone facies defined as grain supported, and limy mud lacking limestone, having
almost a sphere-pack internal texture. Figure 5.20 presents the grainstone trend as a
dotted red line with the well log data scattered over the chart in the blue dots. In the
microscope photo at the bottom of Figure 5.20, we observe that the grainstone has a
texture similar to sandstone, where the dominant pore shape is an inter-granular type. In
contrast, general limestone in the top photo of Figure 5.20 exhibits a pore shape like an
isolated hole.

Now, it is clear that the red dotted trend in Figure 5.20 corresponds to the trend of the
red circles in Figure 5.8, which represents a solid-fluid mixture in a form of sphere-pack.
This trend of a sphere-pack form seems almost straight in the Vp-Vs plane for any
minerals, due to the character of the deviation from the upper Hashin-Shtrikman bound

for the mixture.
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Figure 5.20: A trend of the Vp-Vs relation for grainstone facies of limestone (dotted red
line). The photo on the lower right shows the grainstone; the photo on the left above
shows typical limestone. Note that the axes are the reverse of the convention in
previous figures.

5.6 Conclusions

I discussed a method to investigate Vp-Vs relations using the Hashin-Shtrikman
bounds and several effective-medium theories of solid-fluid mixtures. The comparison of
the location of the model trends in the velocity-porosity plane with that in the Vp-Vs
plane is a key idea to interpret the location as an indicator of the rock texture.

The linear regressions for sandstone by Castagna et al. (1993) and Han (1986) were
compared with the results of the theoretical approach. The results cross-validated each
other, since all equations are virtually identical in the Vp-Vs plane.

I investigated the trend curves of several effective-medium theories in the crossplot
planes. The general trend of sandstone is represented well by the modified Mavko’s

equation (Equation 5.12) for the tubular-pore model. The self-consistent inclusion model
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by Berryman (1995) is not appropriate to predict the Vp-Vs trend of sandstone when we
fix the aspect ratio of pores. The original inclusion model by Kuster and Toks6z (1974)
is better for investigating the Vp-Vs relation in case of a fixed aspect ratio. A modified
Reuss bound seemed best for finding an appropriate trend of the relations among Vp, Vs
and porosity.

A key factor controlling the location in the velocity-porosity plane is the stiffness of
pore, or the shape of pore. Therefore, it controls the Vp-Vs relation as well. The stiffest
pore shape, a sphere, gives us the upper Hashin-Shtrikman bound, which is equivalent to
the lowest Vp/Vs trend in the Vp-Vs plane. Likewise, the softest pore shape, a flat film,
gives us the lower Hashin-Shtrikman bound or the Reuss bound, which is equivalent to
the highest Vp/Vs trend. For sandstone, an inter-granular pore shape mimicked by
randomly oriented tubes exhibits the general Vp-Vs trend very well.

In contrast, carbonates have pores more like isolated spheres in well bounded matrix.
Therefore, the trend in the velocity-porosity and Vp-Vs planes are identical to the upper
Hashin-Shtrikman bound. The bound has curved nature in the Vp-Vs plane. This is why
the general Vp-Vs relation of limestone is approximated best by a polynomial expression.
The trend for dolomite was found to exhibit a character similar to the trend of limestone.
I introduced a polynomial equation for a dolomite-brine mixture to extend Castangna’s
regression into the range of lower velocity, which the empirical regression did not cover
due to insufficient data in that range. In relation to the dominant pore shape, I explained

the linear trend for the grainstone facies of limestone, demonstrated in Tsuneyama et al.

(2003).
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The approach discussed in this chapter is applicable for a mixture of two arbitrarily
selected materials, where fluid is not necessarily brine. Given appropriate parameters for
a particular reservoir rock, we can investigate the Vp-Vs relation to obtain the optimal
method to estimate Vs from the measured Vp and porosity. Furthermore, we can use the
crossplots for diagnosing the reliability of the Vs measurement.

For a long time, Vp-Vs relations have relied almost exclusively on several empirical
relationships. This chapter presented theoretical assessments for the validity of several
known regressions. I discussed how we should consider modifying the known relations
depending on the character of the pores in the target rock.

Since the approach is closely related to the pore shapes in a rock, further studies in
this direction may lead to a way to determine permeability from the measured velocity

and porosity.
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Appendix A Matlab code for the grid preparation of velocity-

anisotropy estimation

%%%%% preparation of 1nput %%%%%
phi=linspace(0,0.4,401);
phi=phi~;

one=ones(1,451);
grid_phi_vp=phi*one;
grid_phi_vp=grid_phi_vp~";
one=ones(1,351);
grid_phi_vs=phi*one;
grid_phi_vs=grid_phi_vs~;
vpO=linspace(1.5,6,451);
vpO=vpO~ ;
vpO=-1*(sort(-1*vp0));
one=ones(1,401);
grid_vpO=vpO*one;
vsO=linspace(0.5,4.0,351);
vsO=vs0*;
vsO0=-1*(sort(-1*vs0));
grid_vsO=vsO*one;

clear phi one vpO vsO

%%%%% generate grid for epsilon %%%%%
eps_A=2.65.*(grid_vp0.n2)-1.65.*(grid_phi_vp).*(grid_vp0.7"2);
eps_a=(35.525+2.3095.*eps_A.*grid_phi_vp)./(-2.3095);
eps_b=-(37.403+35.525_*eps_A.*grid_phi_vp-
eps_A.*grid_phi_vp+eps_A)./(-2.3095);
eps_c=(37.403.*eps_A.*grid_phi_vp)./(-2.3095);
eps_p=eps_b-((eps_a.-n2)./3);
eps_g=2.*((eps_a-"3)./27)-(eps_a.*eps_b)./3+eps_c;
eps_m=(-eps_g./2+sqrt((eps_q-"2)./4-(eps_p-"3)./27)) .~(1/3);
eps_n=-1_.*((abs(-eps_q-/2-sqgrt((eps_q-"2)./4-
(eps_p."3)./27)))-"(1/3));
eps_m2=(-(eps_m+eps_n)-eps_a./3);
eps m1=-2.3095.*eps m2.72+35.525.*eps m2-37.403;
grid_eps=(-1.0428.*eps m2+3.621) .*(eps_m2<3.2048)+(-
0.0809.*eps_m2+0.5383) .*(eps_m2<5.9924) .*(eps_m2>=3.20
48)+(-0.0152.*eps_m2+0.1446) .*(eps_m2>=5.9924) ;
grid_eps=grid_eps.*(grid_eps>=0);
clear eps_A eps_a eps_b eps_c eps_p eps_g eps_m eps_n eps_m2
eps_ml

%%%%% generate grid for gamma %%%%%

gam_A=2.65.*(grid_vs0.72)-1.65.*grid_phi_vs.*(grid_vs0.M"2);

gam_a=(24.278+5.6031.*gam_A_*grid_phi_vs)./(-5.6031);

gam_b=(18.778-24_.278_*gam_A_*grid_phi_vs+gam_A_*grid_phi_vs-
gam_A)./(-5.6031);

gam _c=(-18.778.*gam_A.*grid_phi_vs)./(-5.6031);

gam_p=gam_b-((gam_a.”2)./3);
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gam_qg=2.*((gam_a."3)./27)-(gam_a.*gam_b) ./3+gam_c;
gam_m=(-gam_q./2+sqrt((gam_q-"2)./4-(gam_p."3)./27)) .~(1/3);
gam_n=-1_.*((abs(-gam_q./2-sqrt((gam_q-"2)./4-
(gam_p."3).7/27))).~(1/3));
gam_m2=(-(gam_m+gam_n)-gam_a./3);
gam_m1=-5.6031.*gam_m2."2+24_.278.*gam _m2+18.778;
grid_gam=(-0.0316.*gam _m2+0.0944) .*(gam_m2>=1.8711)+(-
0.1286.*gam_m2+0.2759) .*(1.8711>gam_m2) .*(gam_m2>=0.85
49)+(-1.3598.*gam_m2+1.3284) .*(gam_m2<0.8549);
grid_gam=grid_gam.*(grid_gam>=0);
clear gam_A gam_a gam_b gam_c gam_p gam_g gam_m gam_n gam_m2
gam_ml
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Appendix B Matlab code for the estimation of velocity anisotr opy

tail=length(input_logs(:,1));

for n=1:1:tail;

vp=input_Vp_brine(n,1)*(input_Vp brine(n,1)>=1.5)+6*(input_Vp_bri
ne(n,1)<1.5); %% low velocity<l.5 to 6

theta=input_deviation_angle(n,1);

phi=round(1000*input_porosity(n,1))/1000; %% set decimal point

i10=phi*1000+1;

vp_theta=grid_vpO(:,i0).*(1+grid_eps(:,i0).*(sin(pi*thetas/180)"4)
)-

vp=vp*(min(vp_theta)<=vp)+min(vp_theta)*(min(vp_theta)>vp);

il1=Find(vp_theta(:,1)<=vp);

i2=11(1,:);

output_eps(n,l)=grid_eps(i2,i0);

output_Vp_brine0(n,1)=(vp)./(1+output_eps(n,l)*(sin(pi*thetas/180)
~));

end

%%%%% edit this code to estimate gamma, or use a linear relation
%%%%% between epsilon and gamma
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Appendix C HRS code for elastic-impedance analysis constrained
by rock-physics bounds

/H##H## unit conversion m/sec*g/cc -> km/sec*g/cc ###H#H/

y1=log(EI97near/1000);

y2=1og(EI197mid/1000);

y3=log(EI197far/1000);

/#H###H# least squares linear Tt #####/

x1=0.024471741;

x2=0.066987298;

x3=0.15900082;

B=x1"N2+Xx2"N2+X3"2;

C=yl+y2+y3;

D=x1*yl+x2*y2+x3*y3;

a=(3*D-C*(X1+x2+x3))/ (3*B- (X1+x2+x3)"2);

b=(B*C-D*(x1+x2+x3))/ (3*B-(X1+x2+x3)"2);

Elnl=exp(a*x1+b);

Elml=exp(a*x2+b);

Elfl=exp(a*x3+b);

/H#H#E apply rock-physics bounds #####/

EITf2=(EIf1-(0.8077*EIn1+0.15))*((0.689*EInl1+1.8466)-
(0.8077*EIN1+0.6415))/((0.689*EIn1+2.6)-
(0.8077*EIN1+0.15))+(0.8077*EINn1+0.6415);

EIn2=(EIn1-(EIf1-2.6)/0.689)*((EI1f1-0.6415)/0.8077-(EI1fl-
1.8466)/0.689)/((E1f1-0.15)/0.8077-(EIf1-
2.6)/0.689)+(E1f1-1.8466)/0.689;

dEIN=EIn1-EIn2;

dEIT=EIT1-EIf2;

X=(dEIn*(dEIT/~2))/ (dEIN"2+dE1f"2);

Y=((dEIN"2)*dEIT)/(dEIN"2+dE1T"2);

EIN3=ElInl-X;

EIT3=EI1fl-Y;

EIm3=(EIf3-(0.8077*EIN3+0.6415))*((0.8934*EIn3+0.6030)-
(0.9267*EIN3+0.2414))/((0.689*EINn3+1.8466)-
(0.8077*EIN3+0.6415))+(0.9267*EINn3+0.2414);

/#H##E solve Inverse matrix equation & final scaling #####/

Vp=0.95*(exp(133.8317*1og(EIN3)-
195.6696*10og(EIm3)+61.8380*10og(EI1f3)));

Vs=0.95*(exp(151.2873*1og(EIN3)-
216.6207*1og(EIm3)+64.8335*10g(EIT3)));

Rho=1.05*(exp(-132.0151*1og(EINn3)+194.7416*1og(EIm3)-
61.7266*10g(EIT3)));

/H##HH#E compute shale volume #####/

Vpg=4.0;

b1=3-Vpg*2.5;

b2=2_6-Vpg*2.1;

Vsho=(b2-(Vp-Vpg*Rho))/(b2-bl);

scl=0;

sc2=0.6;

Vsh97=1-(sc2-Vsho)/(sc2-scl);

Vsh97;
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Appendix D HRS code for the computation of fluid saturation:
(1) calculation of common rock-frame properties

[ HEHBHH AR RS

/> #*/
/*# Computation for 1997 #*/
/*# #*/
/T HARH AR T
/*::::::::::::::::::::::::::::::::::::::*/
/* Compute elastic moduli and porosity */
/*::::::::::::::::::::::::::::::::::::::*/

Vshm=0.5*(Vsh97vp+VshO0lvp);
Gsat97=Vs97*Vs97*Rh0o97;
Gdry97=Gsat97;
Ksat97=Vp97*Vp97*Rho97-4/3*Gsat97;
Phi97=-0.5401*Rh0o97+1.4350;

/*:::::::::::::::::::::::::::::::::::::::::::*l
/* Porosity cut-off, indicatorl & indicator2 */
/*:::::::::::::::::::::::::::::::::::::::::::*l

Low_por=0.001;

indicatorl = Phi97;

indicator2 = Phi97;

index=0;

while( 1ndex < numsamples(Phi97))

if(Phi97[index] < Low_por)

{
indicatorl[index] = O;
indicator2[index] = 0.001;
by
else
indicatorl[index] = 1;
indicator2[index] = O;
index = index +1;
}
Phi97=Phi97*indicatorl+indicator?2;
/*:::::::::::::::::::::::::::::::::::::::::::::::::*/
/* Water-saturated rock consists of average solid */
/*:::::::::::::::::::::::::::::::::::::::::::::::::*/

Rho97ww=(1-Phi97)*(2.67*(1-Vshm)+2.58*Vshm)+Phi97*1.0038;

Vs97ww=sgrt(Gsat97/Rho97ww) ;

Vp97ww=Vs97ww/0.79+1;

Ksat97ww=Vp97ww*Vp97ww*Rho97ww-4/3*Gsat97;

Kmnri1=0.5*((1-Vshm)*38.13+Vshm*23)+0.5*(1/((1-
Vshm)/38.13+Vshm/23));

/*:::::::::::::::::::::::::::::::::::::::::::::::::::::::*/
/* Compute the bulk modulus and density of in-situ fluid */
/*:::::::::::::::::::::::::::::::::::::::::::::::::::::::*/

Kdry97=Kmnr1*(1-(1-Phi97)*Ksat97ww/Kmnrl -
Phi97*Ksat97ww/2.7416)/ (1+Phi97-Phi97*Kmnrl/2.7416-
Ksat97ww/Kmnrl);
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[ HEHBHH R RS/

/*H# #*/
/*# Computation for 2001 #*/
/*# #*/
/T HHBH A A AR A S
/*::::::::::::::::::::::::::::::::::::::*/
/* Compute elastic moduli and porosity */
/*::::::::::::::::::::::::::::::::::::::*/

Gsat01=Vs01*Vs01*Rho01;
Gdry0l=GsatO1;
Ksat01=Vp01l*Vp01*Rho01l-4/3*Gsat01l;
Phi01=-0.5401*Rho01+1.4350;

/*:::::::::::::::::::::::::::::::::::::::::::*l
/* Porosity cut-off, indicatorl & indicator2 */
/*:::::::::::::::::::::::::::::::::::::::::::*l

Low_por=0.001;

indicatorl = PhiOl;

indicator?2 PhiO1;

index=0;

while( 1ndex < numsamples(PhiOl))

if(PhiOl[index] < Low_por)

indicatorl[index] 0;

indicator2[index] = 0.001;
by
else
indicatorl[index] = 1;
indicator2[index] = O;
index = index +1;
}
Phi01=PhiOl1*indicatorl+indicator?2;
/*:::::::::::::::::::::::::::::::::::::::::::::::::*/
/* Water-saturated rock consists of average solid */
/*:::::::::::::::::::::::::::::::::::::::::::::::::*/

RhoO1lww=(1-Phi01)*(2.67*(1-Vshm)+2.58*Vshm)+Phi01*1.0038;

Vs0lww=sgrt(Gsat01l/Rho0lww) ;

VpOlww=VsO1lww/0.79+1;

KsatO0lww=VpOlww*VpOlww*RhoOlww-4/3*GsatOl;

Kmnri1=0.5*((1-Vshm)*38.13+Vshm*23)+0.5*(1/((1-
Vshm)/38.13+Vshm/23));

/*:::::::::::::::::::::::::::::::::::::::::::::::::::::::*/
/* Compute the bulk modulus and density of in-situ fluid */
/*:::::::::::::::::::::::::::::::::::::::::::::::::::::::*/

KdryOl=Kmnr1*(1-(1-PhiOl)*KsatOlww/Kmnrl-
PhiOl1*KsatOlww/2.7416)/(1+PhiO1-PhiO01*Kmnrl/2.7416-
KsatOlww/Kmnrl);

[ TR R R )

/*H #*/

/*# Computation for common rock frame #*/

/*# #*/

[ R
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Phim=0.5*(Phi97+PhiOl);
Rhomww=0 . 5* (Rho97ww+Rho01ww) ;
Kdrym=0_.5*(Kdry97+Kdry01);

* *

[/ F===—=—=======—=—======%*/
/* output selection */
Vhot———— iy 4
Rhomww;

162



Appendix E HRS code for the computation of fluid saturation:

(2) calculation of fluid saturation

/*::::::::::::::::::::::::::::::::::::::::*/
/* Compute K and density of in-situ fluid */
/*::::::::::::::::::::::::::::::::::::::::*/

Gsat97=Vs97*Vs97*Rh0o97;

Ksat97=Vp97*Vp97*Rho97-4/3*Gsat97;
Kmnr1=0.5*((1-Vshm)*38.13+Vshm*23)+0.5*(1/((1-
Vshm)/38.13+Vshm/23));

KFO7=Phim*KmnrI*(Ksat97/ (Kmnrl-Ksat97)-Kdrym/(Kmnrl-

Kdrym))/ (1+Phim*(Ksat97/ (Kmnrl-Ksat97)-Kdrym/(Kmnr1-Kdrym)));
Rhof97=1.0038-(Rhomww-Rho97)/Phim;

KF97rcp=1/KFf97;

*

/ ::::::::::::::::::::::::::::::::::::::::::::*/
/* Solve inverse matrix for fluids saturation */
/*::::::::::::::::::::::::::::::::::::::::::::*/

Sw97h=0.2668*KF97rcp+4.3142*Rhof97-3.4279;
S097h=-0.4480*Kf97rcp-4.9043*Rhof97+5.0863;
Sg97h=0.1813*KF97rcp+0.5900*Rhof97-0.6584;
Sw97a=0.6486*KF97-0.9750*Rhof97+0.2004;
S097a=-1.0894*Kf97+3.9789*Rhof97-1.0074;
Sg97a=0.4407*KF97-3.0039*Rhof97+1.8070;

/*::::::::::::::::::::::::::::::::::::::::::::::::::*/
/* Mix saturation-scale hw: weight for fine-mixture */
/*::::::::::::::::::::::::::::::::::::::::::::::::::*/
hw=0.5;

Sw97=hw*Sw97h+(1-hw)*Sw97a;
S097=hw*S097h+(1-hw)*S097a;
Sg97=hw*Sg97h+(1-hw)*Sg97a;
/*::::::::::::::::::::::::::::::::::::*/

/******/

/* Sw */

/******/

Low Sw=-2;

High Sw=2;

indicatorSw = Sw97h;

index=0;

while( index < numsamples(Sw97h) )

1T(C Sw97h[index] >= Low_Sw &&
Sw97h[index] <= High_Sw &&
Sw97afindex] >= Low_Sw &&
Sw97a[index] <= High_Sw )

{
indicatorSw[index] = 1;

}

else
indicatorSw[index] = 0;
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index = index +1;

}
Sw97=indicatorSw*Sw97+(1-indicatorSw);
/******/

/* So */

/******/

Low So=-2;

High_So=2;

indicatorSo = S097h;

index=0;

while( index < numsamples(So97h) )

iT( So97h[index] >= Low_So &&
S097h[index] <= High_So &&
So97a[index] >= Low_So &&
So97a[index] <= High_So )

{
indicatorSo[index] = 1;
ks
else
indicatorSo[index] = 0O;
index = iIndex +1;
}
So97=indicatorSo*So97;
/******/
/* Sg */
/******/
Low_Sg=-2;
High_Sg=2;
indicatorSg = Sg97h;
index=0;

while( 1ndex < numsamples(Sg97h) )

if( Sg97h[index] >= Low_Sg &&
Sg97h[index] <= High_Sg &&
Sg97afindex] >= Low_Sg &&
Sg97a[index] <= High_Sg )

{
indicatorSg[index] = 1;
}
else
indicatorSg[index] = 0;
index = index +1;

Low Rhof=0;
Low Kf=0;
Low Phi=0.1;

164



Up_Vshm=0.5;

indicator3 = Sw97;

index = 0O;

while( index < numsamples(Sw97) )

iT( Rhof97[index] > Low_Rhof &&
KF97[index] > Low KF &&
Phim[index] >= Low_Phi &&
Vshm[index] < Up_Vshm )

{
indicator3[index] = 1;
}
else
indicator3[index] = O;
index = index +1;

}
Sw97=indicator3*Sw97+(1l-indicator3);

So97=indicator3*So97;
Sg97=i1ndicator3*Sg97;

/*:::::::::::::::::::::::::::::::::*/
/* Cut-off negative Sw, indicator4 */
/*:::::::::::::::::::::::::::::::::*/
Low_Sw=0;

indicator4 = Sw97;

index = 0O;

while( index < numsamples(Sw97) )

iT( SwO97[index] < Low_Sw )

{
indicator4[index] = O;
ks
else
indicator4[index] = 1;
index = index +1;
}
Sw97=indicator4*sSw97+(1l-indicator4);
/*:::::::::::::::::::::::::::::::::*/
/* Cut-off negative So, indicator5 */
/*:::::::::::::::::::::::::::::::::*/
Low So0=0;
indicator5 = So097;
index = 0O;
while( index < numsamples(S097) )
{
if( So97[index] < Low_So )
{
indicator5[index] = O;
+
else
indicator5[index] = 1;
index = index +1;
¥
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So97=indicator5*So97;

/*:::::::::::::::::::::::::::::::::*/
/* Cut-off negative Sg, indicator6 */
/*:::::::::::::::::::::::::::::::::*/
Low_Sg=0;
indicator6 = Sg97;
index = 0O;
while( 1ndex < numsamples(Sg97) )
{
if( Sg97[index] < Low_Sg )
{
indicator6[index] = O;
by
else
indicator6[index] = 1;
index = index +1;
}
Sg97=indicator6*Sg97;
/*::::::::::::::::::::::::::::*/
/* Balance fluids saturation */
/*::::::::::::::::::::::::::::*/

Sw97=Sw97/ (Sw97+S097+Sg97) ;
S097=S097/ (Sw97+S097+Sg97) ;
Sg97=Sg97/ (Sw97+S097+Sg97) ;
* *

[ *====—=—=—======—=—=====%*/
/* Output selection */
[ *====—========—=—=====%*/
S097;
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